Welcome     |      Research     |      Teaching     |      Publications     |      Presentations



Statistics for Genomic Data Analysis


Instructor: Darlene Goldstein
Assistante: Alix Leboucq
Course: CM 1 104
Exercises: MA B1 486 (computer room)

  

Week Date Topic TP
1 21 Sep
Lec 1
  • Molecular biology/technology background
  • Image analysis basics
TP 1
R intro
2 28 Sep
Lec 2
  • Image analysis, microarrays intro (2-channel)
  • EDA
TP 2
Array EDA
3 5 Oct
Lec 3
  • Affy arrays, expression quantification
  • Bayesian estimation, DE genes
GTF
4 12 Oct
Lec 4
  • Robust regression
  • Affy QC
TP 4
Affy quality
5 19 Oct
Lec 5
  • Experimental design
  • Linear modeling, DE genes
TP 5
limma for DE
6 26 Oct
Lec 6
TP 6
Multiple testing
7 2 Nov
Lec 7
  • Cluster analysis

  • 
          
TP 7
Clustering
8 9 Nov
Lec 8
  • Annotation, gene ontology
  • Gene set testing
TP 8
Practice exam
9 16 Nov
Lec 9
  • Classification

  • 
          
TP 9
Classification
10 23 Nov
Lec 10
  • Sequencing data basics
  • GLM
GTF
11 30 Nov
Lec 11
  • DE for sequence data
  • edgeR
TP 11
edgeR
12 7 Dec
Lec 12
  • Genetic association studies
  • Genotyping arrays, GWAS
Exam
13 12 Dec DEADLINE TO TURN IN PRACTICE EXAM
13 14 Dec
Lec 13
  • Miscellaneous topics
  • Review
(exam)
14 21 Dec
     No class