
Integrative Analysis of Genomic Properties

Pratyaksha “Asa” Wirapati

Swiss Institute of Bioinformatics

Lausanne, Switzerland

1



Outline

• The concept of “genomic properties”

• Analysis of genomic properties

• Examples

• Discussions

2



Background

A flood of disparate genomic data in recent years

Two “axes of integration”:

• “Vertical”

Various assays (expression, CGH, genetics, clinical, etc.)
from the same samples (patients, tissues, etc.)

• “Lateral”

Relating results of disparate studies (different sample, assays,
and even completely different research questions)

⇒ connected by “genes”

Concerted behavior of a group of genes in different contexts
may signal a common underlying process
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Example 1
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(The association between expression and cell-cycle phase in HeLa cells)
is “associated” with

(The association between expression and survival in breast cancer patients)

[1] Whitfield et al. (2002) Mol Biol Cell 13:1977
[2] Wirapati et al. (20??) Submitted, resubmitted, resubmitted, . . .
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The “definition” of genomic properties

Predicates or statements that can be made about each gene in the
genome.

Operationally, anything that can be represented as a vector
(T1, . . . , Ti, . . . , TG), where i = {1, . . . , G} are genes in the genome,
can be considered a “genomic property vector”.

• The notion of “genes” is loosely defined, e.g. gene products,
promotor binding sites, intergenic SNPs, etc. can be considered
proxies of genes if there is a reasonable mapping scheme

• Context of the properties

– Broad, e.g. gene ontology annotation

– Specific population or experimental conditions

– Individuals (we are not interested in this)
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Examples of Genomic Properties

• “Trivial” properties: chromosomal location, etc.

• Gene-by-gene summary results (effect size or test of
significance statistics) of genome-wide studies:

– Expression studies

– Genetic linkage, e.g. SNP chips

– ChIP-CHIP binding assays

– Evolutionary divergence between human and chimp

• Decisions based on the above

– Prognostic signatures

• Results of annotations or reviews by “experts”

– Gene Ontology, KEGG, MSigDB, etc.
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Example 2

Continuous-Continuous Continuous-Discrete Discrete-Discrete
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⇒ “Gene sets” are vectors of binary summary statistics

Statistical issue: can the genes be considered “subjects” in sampling
experiment?

Dependencies ⇒ p-value is off, but (ab)using the tests of (linear)
independence (as ad hoc similarity measures) is found to be useful
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Operations on genomic properties

• Construction of genomic property matrices

• Comparison of property vectors (pairwise)

• Aggregation of similar properties

• Visualization of similarity/dependency structure
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Construction from primary data

Depends on the nature of each study

For most expression array studies, use gene-wise (generalized) linear
models.

Use Z-scores (β̂/ŜE(β) or sgn(β̂)
√

deviance) of partial tests of
coefficients as the “common currency of integration”

It’s a function of p-value and still keep the sign of the effect

Under the null, Z ∼ N(0, 1).

Z ≈ 4.6 ⇔ p = 0.05/20000 (Bonferroni correction)
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Matrix of Z-scores
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BC: NKI: coex ESR1ÈERBB2,AURKA,PLAU,STAT1
BC: NKI: coex ERBB2ÈESR1,AURKA,PLAU,STAT1
BC: NKI: coex AURKAÈESR1,ERBB2,PLAU,STAT1
BC: NKI: coex PLAUÈESR1,ERBB2,AURKA,STAT1
BC: NKI: coex STAT1ÈESR1,ERBB2,AURKA,PLAU
BC: NKI: cox overall survival
BC: NKI: cox metastasis-free survival
BC: NKI: cox disease-free survival
BC: NKI: lm lymphocitic infiltration Hpathol.LBC: NKI: lm ER-statusÈgrade
BC: NKI: lm gradeÈER-status
BC: UPP: coex ESR1ÈERBB2,AURKA,PLAU,STAT1
BC: UPP: coex ERBB2ÈESR1,AURKA,PLAU,STAT1
BC: UPP: coex AURKAÈESR1,ERBB2,PLAU,STAT1
BC: UPP: coex PLAUÈESR1,ERBB2,AURKA,STAT1
BC: UPP: coex STAT1ÈESR1,ERBB2,AURKA,PLAU
BC: UPP: cox overall survival
BC: UPP: cox disease-free survival
BC: UPP: lm ER-statusÈgrade
BC: UPP: lm gradeÈER-status
BC: UPP: lm p53-statusÈER,grade

Summary profiles of differential expression are identified by the contexts
(disease-type, cohort) and regression equations

Multiple questions can be asked on the same dataset
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Consistent answers in different cohorts/platforms

p53-mutation
lymphocite
tumor-grade

ER-status

overall survival

disease-free surv.

STAT1 coexp

PLAU coexp

ESR1 coexp

ERBB2 coexp

AURKA coexp

Datasets: NKI (custom Agilent), UPP (Affy U133A,B), STOCK (Affy U133A,B),
UNC (Agilent HuA1), NCH (Agilent HuA1), DUKE (95Av2)
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Aggregating replicate properties

Summary results (of the same question) from multiple cohorts can be
combined ⇒ stronger significance and economy of thought in
understanding many properties

Spectrum of choices for combining:

• “Normalize” and pool (then treat as single cohort)

• Covariate adjust, random effect models

• Combine meta-analytically (i.e. post-hoc)

– β (only when meaningful)

– scale-free effect sizes (Pearson’s corr., Cohen’s d, Z/
√

n)

– (signed) significance (Z, −2 log p)

• Combine decisions (Venn diagram)
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fixed-effect DerSimonian-Laird
meta analyis random-effect

meta analysis

Appropriate ways to combine summary profiles depend on the data and questions.

For exploration, we just use the inverse-normal method Zj =
P

i Zij/
p

Kj
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Broader Scope

Add more datasets (glioblastoma, MCF7 estradiol-challenge and
HeLa cell cycle), and more questions (survival in subtypes)

glioblastoma: coex TOP2A
breast: coex AURKA HproliferationLbreast: histologic grade
breast: survival in all patients
breast: survival in luminal HER+Lfibroblast: cell cycle periodic expression
breast: survival in ERBB2
glioblastoma: survival
glioblastoma: coex COL6A3
breast: coex PLAU HstromaLbreast: coex STAT1 Himmune responseLbreast: lymphocytic infiltration
breast: survival in basal�BRCA1-like
glioblastoma: coex DLL3
MCF7 cell line: estradiol induced
breast: coex ESR1
breast: ER status
breast: coex ERBB2

PLAU STAT1AURKA ERBB2NDRG1 BCL2 FABP4

ESR1MKI67 FOXC1EGFR ADM SPARCL1

Similar answers to the similar questions in different diseases

Relationship between tumor-based studies and experimental models
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Coexpression modules and survival
in breast cancer subtypes
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• AURKA (proliferation) module in ER+ (”luminal”)
Sotiriou 2006 J Natl Cancer Inst 98:262

• PLAU (stroma/invasion) module in ERBB2+ tumors
Urban 2006 J Clin Oncol 24:4245 (RT-PCR on large independent cohort)

• STAT1 (immune response) might be protective in ER- subtype (”basal” or
BRCA1-like)
Ongoing investigation
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Reviewing Proposed Prognostic Signatures

• Most breast cancer prognostic signatures are genes “sampled” from the
proliferation module ⇒ potentially astronomical number of equivalent
signatures
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Coanalysis with GO terms and MSigDB

Treat them as binary-value matrices

Huge matrices (thousands of rows, tens of thousands of columns)

However, they are extremely sparse (less that 0.5% of the cells are
non-zero) ⇒ sparse representations and algorithms

Statistical issues: how to compare?

⇒ Similarity measures for continuous-continous, continuous-discrete,
and discrete-discrete should be comparable.

Let’s see what happens if we (ab)use linear models (i.e. use
correlation).

Organize the properties by finding their minimum (maximum
correlation) spanning tree.
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“High-tech” graph visualization program
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Discussions

Biology ”in-the-large”: arrays of genomic studies

“Google Genomics”?

Analysis of many properties (both from experimental results at hand
and from annotation databases) should be done simultaneously.

Open statistical issues:

• Similarity measures

• p ≈ n, but extreme imbalance of signal and noise features

• Graphical models with conditional Gaussian model (mixed
discrete and continous variables)?
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