
An Automated Allele-calling

System for High-throughput

Microsatellite Genotyping

Pratyaksha Jagad Wirapati

Submitted in total fulfillment of the requirements

of the degree of Doctor of Philosophy

January 2003

Department of Medical Biology

University of Melbourne

The Walter and Eliza Hall Institute of Medical Research



Abstract

Microsatellite markers are widely used for genetic analysis in biomedical re-
search, agriculture, population and evolutionary biology, as well as for forensics
and diagnostics. Advances in laboratory automation and data collection have
increased the throughput and have reduced the cost of large-scale genotyping.
One step in the measurement process that still needs improvement is “allele call-
ing”, where raw electrophoresis signals are converted into discrete genotypes.
This is still largely a laborious manual process that constitutes more than a
quarter of the genotyping cost.

Automating allele calling is hampered by, among others, the presence of
“stutter patterns” (artefact peaks introduced during PCR amplification) and
variation in electrophoresis migration behavior. Both effects are marker spe-
cific, making it difficult to devise an algorithm that works for all markers with-
out marker-specific calibration. This thesis proposes an allele calling method
that consists of two main computer programs: (1) STRAL: a trace alignment
algorithm that normalizes variation in the “time domain” of the observed chro-
matograms, and (2) FA: a pattern recognition algorithm that performs allele
calling on the aligned chromatograms. Both are adaptive and do not require
marker-specific calibration. For a given observation, each possible genotype is
associated with a quality score related to the probability of calling error. This
quality score can be used to rank and select the most likely genotype(s).

Benchmark tests were performed on ∼33,000 genotypes taken arbitrarily
from the daily output of a genotyping service laboratory. The performance is
characterized by a trade-off between true calls and miscalls at a given cutoff of
the quality value. At a level corresponding to less than 1% error (acceptable for
most purposes), 55% of the data can be called correctly (or 70% of the data that
can be called by human analysts). This performance is still far from manual
calling (at 80% correct call of the total with < 0.2% error). However, it is useful
for a hybrid system where up to 70% of the data is scored automatically, 15% of
which is automatically rejected, and the remaining 30% needs to be manually
examined, but with only 5% of them requiring corrections.

We conclude that this prototype is worth implementing for actual appli-
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cations. The noteworthy features are the ability to adapt to marker-specific
effects and to predict the error rate. More importantly, a framework has been
established where automatic, training-set-driven optimization of the algorithms
might yield better performance in the near future.
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Chapter 1

Introduction

1.1 Motivation

Microsatellite or short tandem repeat (STR) markers are widely used for genetic
analysis in biomedical research [Weber and Broman 2001], agriculture [Beuzen
et al 2000, Dekkers and Hospital 2002], population and evolutionary biology
[Kim et al 2002, Webster et al 2002], as well as for forensics [Carey and Mitnik
2002] and diagnostics [Sidransky 1994]. Advances in genotyping technology have
driven the costs down dramatically (see figure 1.1). This is achieved through
laboratory automation, miniaturization in chemical reactions and automated
fluorescence electrophoresis machines [Weber and Broman 2001]. Economy of
scale is achieved through high-throughput systems at specialized laboratories, or
“core facilities”, that provide generic genotyping services to a variety of genetic
analysis projects. These “genotyping centers” have been established in many
countries. One of the first of these facilities, and the pioneer in many aspects of
the technology, was the Mammalian Genotyping Service in Marshfield1. Other
prominent laboratories are the Center for Inherited Disease Research (CIDR)2

and DeCode Genetics in Iceland3. In Australia, the high-throughput genotyping
center is located at the Melbourne branch of the Australian Genome Research
Facility (AGRF)4, which supplied all the data used in this thesis project.

Figure 1.1 also indicates that the cost drop started to plateau in 1999. To
see whether further cost reduction is possible, we need to examine the cost
components. The breakdown is shown in figure 1.2. According to Weber and
Broman [2001], about half of the costs are devoted to salaries (covering admin-
istration, scoring and a good portion of electrophoresis in figure 1.2a). Similar
cost breakdown is found at the AGRF (figure 1.2b), although the system is

1www.research.marshfieldclinic.org/genetics
2www.cidr.jhmi.edu
3www.decodegenetics.com
4www.agrf.org.au
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Figure 1.1: A rapid decrease in the cost of microsatellite genotyping in the last
decade. The data is from the Mammalian Genotyping Service in Marshfield
[Weber and Broman 2001, table 7.1]. The cost is for a genome scan with 400
markers.
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Figure 1.2: The breakdown of microsatellite genotyping costs at two genotyping
centers: a) Mammalian Genotyping Service (MGS) at Marshfield [Weber and
Broman 2001] and b) the Australian Genome Research Facility (John Barlow,
personal communication). Both are similar. The ‘consumables’ in the AGRF
might include reagents for electrophoresis, while ‘gel’ is mostly labor cost for
manual gel handling. Manual scoring (or allele calling) constitutes nearly 30%
of the genotyping costs.
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based on commercial genotyping technology (unlike the custom-built one used
in Marshfield MGS). For the AGRF data, all components except ‘consumables’
are labor costs, which is slightly more than half of the total cost. In both cases,
‘scoring’ constitutes 28%-29% of the total cost. Also known as allele calling, this
is a process where the patterns of continuous electrophoretic signals (known as
‘traces’) are converted into discrete genotypes, or a pair of alleles corresponding
to the genetic variations at the marker loci. This process only involves analyz-
ing information and thus can be potentially replaced by software. Substantial
cost reduction is therefore expected in this area [Weber and Broman 2001, page
84], provided that allele calling software with acceptable performance can be
devised.

Consequently, efforts have been made to develop software for automated al-
lele calling. Some are published [Mansfield et al 1994, Perlin et al 1994, 1995,
Stoughton et al 1997, Pálsson et al 1999], while others are proprietary or for
in-house use only. However, there is not yet a satisfactory solution [Weber and
Broman 2001, Li et al 2001]. The sources of difficulties will be detailed later in
this chapter. In brief, there are various effects and noise introduced throughout a
complex measurement process involving various technologies: polymerase chain
reaction (PCR), electrophoresis and sample multiplexing. Although the under-
lying information of interest is simple (a pair of discrete labels corresponding
to the length variants of the microsatellite loci), the observed signal is complex:
multi-component, high-resolution time series data exhibiting complex patterns
of peaks. The patterns are, however, highly consistent (at least from the point
of view of a trained human analyst). Using intuitive knowledge about how the
patterns are generated and the basic principle of genetics that there are at most
two alleles in each individual, and aided by a graphical user-interface software
for examining and editing the trace and genotypes, manual allele calling can be
performed with high accuracy. The error rate is typically less than 0.2% [Ewen
et al 2000, Weeks et al 2002]5.

The best published result for a fully automated algorithm is 1.34% error
rate6 reported by a team from DeCode Genetics [Pálsson et al 1999]. Depending
on the specific requirements of the downstream statistical genetic analysis, this
rate might not be acceptable [Weeks et al 2002]. Further manual examination
and corrections is needed if an error rate below 1% is required. Furthermore,
the DeCode Genetics algorithm is proprietary and might include a patented
algorithm [Pálsson et al 1999, Perlin et al 1994, 1995, Perlin 2000]. There
is clearly room for a new effort to develop an automated allele caller with,

5Note that this is the rate of calling error only, and does not include ‘intrinsic’ errors such

as recent mutations or null alleles.
678 miscalls out of 5806 observations as ‘good’ in the test data set.
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hopefully, improved performance. There is also a need for a publicly and openly
distributed implementation, which might evolve into a good solution through
widespread use and community feedback and participation.

One feature that would be useful but is not yet found in the existing solutions
is the ability to predict the error rate of the called genotypes. Such ‘quality
values’ have been found to be extremely useful in another problem involving
electrophoresis traces: base calling in DNA sequencing. The software suite
PHRED/PHRAP/CONSED [Ewing et al 1998, Ewing and Green 1998, Gordon
et al 1998, Richterich 1998] is a widely used package proven to be instrumental
in many whole-genome sequencing projects. The ‘PHRED quality score’ has
become a standard quality control for DNA sequence information. The score
corresponds closely to the probability of calling error. A cutoff level can be
flexibly chosen depending on the appropriate trade-off between error rate and
yields. Additionally, the scores themselves can be incorporated as weighting
factors in downstream analysis algorithms, allowing more optimal use of the
available data. We would like to develop an analogous quality indicator for
microsatellite genotyping.

The remainder of this chapter contains a brief overview of microsatellite
markers, the way they are measured (genotyped) and the various effects that
complicate the raw signals. Existing solutions are reviewed and finally we outline
our general approach and the proposed method.

1.2 Genetic Markers and Microsatellite Loci

Genetic analysis attempts to correlate genetic states of individuals in the popu-
lation being studied with other biological properties ranging from disease status,
to various phenotypic traits in agricultural species, to geographical or ethnic ori-
gins. It is neither necessary nor feasible to measure the exact genetic state of
an individual (which is the DNA sequence of all chromosomes). Knowing the
states of a handful of specific sites along the genome is often sufficient. In order
to be useful, these sites, also known as markers or loci (singular locus), have to
exhibit polymorphism. That is, a number of variant states, or alleles, need to
be present in the population. A good marker has many alleles, and each allele
occurs with high frequency. There are many different types of markers based
on the kind of sequence polymorphisms that are investigated, and various tech-
nologies can be used to genotype each type of markers [Edwards and Caskey
1991, Ahmadian and Lundeberg 2002].

A microsatellite or short tandem repeat (STR) locus is a stretch of sequence,
whose location in the genome is defined by a pair of unique sequences at its
ends, with a region in the middle containing a repeat sequence (see figure 1.3a).
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The repeat sequence is a string of duplicated and tandemly arranged short
sequences or repeat units. Each repeat unit may consist of six or less nucleotides.
Microsatellites are often classified according to the length of their repeat units.
The terms mono-, di -, tri -, tetranucleotide repeats and so on are often used to
indicate the length of the repeat unit of a microsatellite locus. Di-, tri- and
tetranucleotide repeats are the ones that are most useful for genetic analysis.
The utility of microsatellites for genetic analysis comes from the highly variable
nature of the number of repeats in the population. Each length variant can be
genetically considered an allele (figure 1.3b).

Microsatellite loci are found throughout the genomes of eukaryotes [Hamada
et al 1982, Toth et al 2000]. Their usefulness as markers for genetic analysis was
first demonstrated in the late 1980’s [Litt and Luty 1989, Tautz 1989, Weber
and May 1989]. Isolation and characterization of new loci followed [Weber
1990, Beckmann and Weber 1992, Hudson et al 1992, Weissenbach et al 1992,
Levitt et al 1994], culminating in a comprehensive map of 5,264 microsatellite
markers [Dib et al 1996]. Not all of the markers are needed to perform a genetic
analysis. For practical reasons (and cost), a set of well-chosen markers are used
for typical ‘genome scan’ applications. They are chosen for high heterozygosity
(the probability of being a heterozygote in the population, which confers higher
‘dissecting’ power), ease of genotyping, equal spacing across the genome, and
optimal arrangement in a multiplexed genotyping system (described below).
Such sets are called ‘linkage mapping sets’, and are available for various marker
densities.

1.3 Microsatellite Genotyping

1.3.1 Overview of the genotyping procedure

The most common way to genotype a microsatellite locus is by a combination
of polymerase chain reaction (PCR) and electrophoresis. This method does
not give the full sequence information about the alleles. Only the information
about (relative) length of the alleles can be obtained. This is sufficient for
most genetic analysis applications, which only require arbitrary (but consistent)
labels of the alleles. There might be some information loss when the length of
two two alleles are the same but the underlying sequences are different due
to mutations other than a change in the number of repeats (a phenomenon
called homoplasy, Weber and Broman [2001]). However, more often the length
variations of microsatellite markers are due to variation in the number of repeats.
The loss of information due to homoplasy should be very small. Therefore, the
main objective in microsatellite genotyping is to determine the relative length
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a)

Locus 1:

CTCCTTCCAACACATGCAGGCACACACACACACACACACACACACACACACACATGATTCGAAGCAGTTG

....................\________________________________/................

unique sequence repeat sequence unique sequence

Locus 2:

GCATGTCATCTATCATATCTATCTATCTATCTATCTATCTATCTATCTATCTATCATCTATTGAGACATGC

...............\____________________________________________/..........

unique sequence repeat sequence unique sequence

b)

individual 1:

CTCCTTCCAACACATGCAGGCACACACACACACACACACACACACACACACACATGATTCGAAGCAGTTG

\________________________________/

CTCCTTCCAACACATGCAGGCACACACACACACACACACACACACACACATGATTCGAAGCAGTTG

\____________________________/

individual 2:

CTCCTTCCAACACATGCAGGCACACACACACACACACACACACACACACACACACACACACATGATTCGAAGCAGTTG

\________________________________________/

CTCCTTCCAACACATGCAGGCACACACACACACACACACACACACACACACACACACACACATGATTCGAAGCAGTTG

\________________________________________/

Figure 1.3: Panel a) shows examples of the typical DNA sequence of microsatellite

loci. In each locus, the repeat sequence is flanked by unique sequences that identify the

marker. Locus 1 is a dinucleotide (CA)n repeat locus and locus 2 is a tetranucleotide

(TATC)n repeat locus. Only one chromosome is shown is each case. Panel b) illustrates

the length variations of a locus in a population. Each individual has two chromosomes

(maternal and paternal). The length variations are due to difference in the number

of repeat units. Each variant is called an allele. If the two alleles of an individual are

identical (such as ‘individual 2’ shown above), the genotype is called a homozygote;

otherwise it is called a heterozygote.
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of the alleles. Next, we outline briefly how this is done at the biochemical level
and introduce some of the important terminology used throughout this thesis.

PCR After the DNA of the whole genome is extracted from a tissue sample
of an individual, the DNA sequence of a marker locus of interest needs to be
“highlighted”. This is done using polymerase chain reaction, which selectively
replicates DNA fragments defined by two short flanking sequences. A pair of
primers (oligonucleotides) complementary to the flanking sequences is used to
start the replication. One of the primers is also labeled with easily detectable
chemicals, such as fluorescent dyes or radioactive isotopes. PCR amplification
multiplies the number of molecules by several orders of magnitude. The product
of the PCR amplification is a solution containing the fragments of the two alleles.
The source DNA is often called the ‘PCR template’, or simply the ‘template’.

Electrophoresis The length of the DNA fragments corresponding to the mi-
crosatellite alleles can be determined using electrophoresis. A high electric field
is used to separate charged molecules by forcing them to move to the electrode
with the opposing polarity. The different molecules in the mixture will migrate
with different velocities depending on their charge and physical interaction with
the medium. For denatured DNA molecules, the main factor that determines
the migration rate is their length (the number of nucleotides). In fact, the re-
lationship between the migration time and the length is proportional [Southern
1979a,b]. The term mobility is often used to describe the migration rate of a
molecule.

The migration rate of a DNA fragment can be determined by measuring
either the time of travel over a fixed distance, or the distance traveled after a
fixed time. In the former, the detector is set up at a fixed location from where
the sample is loaded, and measurement is done continuously throughout the
electrophoresis run. In the latter, detection is done only at the end of the run,
usually by taking the photographic image of the whole medium (almost always a
slab gel). For high-throughput genotyping, the fixed-distance, continuous-time
detection is preferable because the data can be digitized directly. The linear
relationship between time and size offers more uniform separation throughout
the size range, unlike the reciprocal relationship between mobility and size in
the fixed-time electrophoresis. In this report, we limit our scope to the data
obtained from fixed-distance electrophoretic apparatus.

The result of electrophoresis is a spectrum of intensity (concentration of the
chemically labeled substances) as a function of time. This spectrum is also
called a trace, a chromatogram or an electropherogram. The measurement is
done at regular time intervals, say 2400 times per hour. The physical time has
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no significance in the analysis, so we will use the number of data points acquired
since the start of the electrophoresis run, often called scan numbers or simply
scans, as the unit of the domain of a trace. Subsequent analysis may resample
the raw signal, with possible interpolation of the intensity value in between data
points.

In high-resolution systems used for microsatellite genotyping, two DNA frag-
ments differing by one nucleotide can be distinguished as two separate peaks.
The measurement’s sampling rate is usually much higher than the electrophore-
sis resolution (that is, the meaningful fluctuations in the signal are relatively
smooth). The number of data points per nucleotide typically ranges from 8 to
20. It varies throughout the run as the migration rate changes slightly. It also
depends on the instrument and the running conditions.

The time domain of the trace can be calibrated using a set of known frag-
ments electrophoresed together with the unknown fragments. We will call these
calibration fragments size-standard fragments or SSF. The SSF allows compar-
ison between different traces, and identification of the same alleles in different
individuals. However, the relationship between the length (the number of nu-
cleotides) and the size (the location in the spectrum relative to the SSF) is not
straightforward. Note that in the literature, the terms size and length might be
used interchangeably. As we will see later, it is important to explicitly distin-
guish the two concepts.

Multiplexing The throughput of an electrophoresis run can be multiplied
by simultaneously separating a large number of independent samples. A sin-
gle run can have multiple lanes (typically up to 96 lanes, although recently a
384-lane device was introduced). Each lane can be considered a separate elec-
trophoresis process. In capillary electrophoresis (CE), a ‘lane’ is a capillary
tube, which is a physically separate entity. In the older slab gel systems, a
‘lane’ is a path through a two-dimensional gel. The separation between lanes
relies on the physical distance between the wells where the multiple samples are
loaded. Photo-detection in a slab gel apparatus is done across the width of the
gel (if we consider the length to be the direction of the migration). The raw
data is thus an image instead of a set of traces. The number of scans is usually
larger than the number of lanes. Because there is no physical barrier between
lanes, the relationship between the lane and the location along the width can
be distorted. The samples may travel with some sideways movement, instead of
in perfect straight lines. A data analysis procedure called ‘lane tracking’ needs
to be performed to determine a path through the image, based on the patterns
of the DNA fragments. We will not deal with this procedure since satisfactory
solutions exist, both from the instrument vendor as well as other sources. Fur-
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thermore, capillary devices will be more prominent in the future (they do not
require lane tracking).

The second level of multiplexing is achieved by labeling DNA fragments from
different markers with different fluorescent dyes. Each dye has its own charac-
teristic electromagnetic spectrum (in the range of visible light), and therefore
fragments of different markers can be distinguished even if they are loaded into
the same lane and have the same length. Detection is done at several different
wavelengths (typically four) that coincide with the peaks in the dyes’ spectra.
We will refer to this measurement point in the light spectrum as a dye channel.
Thus, each time point in a trace can have, say, four measurements from four
dye channels.

The last level of multiplexing relies on the range of possible alleles in a
typical microsatellite marker. The range is quite narrow (typically less than
40 bp), while the length of the fragments that can be separated with predictable
migration behavior and good resolution ranges from 75 to 400 bp. This means
fragments from many markers can be run together if we can be sure that their
windows do not overlap.

An arrangement of a set of markers that can be multiplexed (through the
use of different dyes and non-overlapping size ranges) is called a panel. A panel
typically consists of 10 to 20 markers. Only three dye channels are usually
used by the markers, because one channel is dedicated for the SSF. Organizing
markers into a standard set of panels greatly simplifies the management of
high-throughput genotyping. Figure 1.4 illustrates the multiplexing scheme in
an electrophoresis run.

In a typical genotyping project, the same set of markers needs to be geno-
typed for a large number of individuals. All PCR products in the same lane
usually have the same DNA template, i.e. they are from one individual. The
number of individuals in a project can be larger than the number of lanes in
a run, therefore the individuals are organized into boxes; each box is always
run together in the same gel. The whole genotyping data in a project is thus a
Cartesian product of individuals and markers (or panels and boxes).

1.3.2 Sources of measurement artefacts

Allele calling is essentially a process of assigning allele labels corresponding to
the (relative) length of the allelic fragments in the template DNA, based on the
observed trace data. We have mentioned earlier that it is not easy to automate
this task. This is due to artefacts and distortions accumulated throughout the
measurement steps, in addition to occasional measurement failures and back-
ground noise. Some of the systematic effects and variations are illustrated in
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D18S474 D18S53 D17S938 D18S464

D18S63 D18S59 D17S921 D17S784 D18S64

D17S928 D18S452 D17S785 D18S1161 D18S68 D17S944

Figure 1.4: An example of a microsatellite genotyping run. The label, p24/001,

indicates panel 24 of ABI linkage mapping set version 2 (10 cM density) and box

number 001. The four plots show the traces (chromatograms) from four different

fluorescence channels. In this figure, traces of different lanes are shown overlaid (only

12 out of 96 are shown to avoid clutter). The top three plots show, respectively, the

blue, green and yellow (black in this figure) channels, which are used for the PCR

products of each individual in the box. The name of the markers and the size ranges

are indicated by the alternating yellow and purple bars. The red channel (the bottom

plot) is dedicated for size-standard fragments, which are DNA fragments of known

length, as indicated by the peak positions on the scale. The trace data shown here

has been re-scaled (on the horizontal axis), such that size-standard fragments from

different lanes, with the same length, coincide on the scale.
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D4S414 D6S276 D6S257 D6S257*

244 251

234 241

241 243

242 242

236 245

235 246

212 228

228 228

212 228

216 226

226 228

216 228

216 222

216 228

183 187

181 181

179 187

177 181

177 181

181 185

181 183

181 181

183 189

177 181

179 185

175 191

183 185

181 185

179 181

181 183

Figure 1.5: Some examples of trace data and their corresponding genotypes. Each col-

umn shows traces from several individuals genotyped at the same marker (the marker

names are shown above). The integers underneath the traces are allele labels (called

manually by human analysts). The dots correspond to the peaks that are likely to

be the original template fragments. Instead of showing a single sharp peak, each al-

lele manifests itself as a characteristic “stutter pattern”. When the length difference

between the two alleles is too small, the patterns overlap; roughly according to the

principle of linear superposition. D4S414 shows some failed measurements (those that

are not called). D6S276 shows that the intensity ratio between the two alleles can

be significantly different, although both alleles are present in equal proportion in the

template DNA. D6S257 and D6S257* are the same marker but different runs, showing

the there is a run-specific effect (rounded ‘bumps’ always trail the sharp cluster of

peaks in D6S257*).
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figure 1.5. The origins of some of these effects have been studied and will be
summarized shortly.

We view the measurement process as a sequence of transformations, where
very simple information (a pair of numbers corresponding to a genotype) is
converted into a complex signal represented by high-resolution time series data.
This idea is illustrated by figure 1.6. The various effects that contribute to the
complex signal are seen to occur in stepwise manner (at least conceptually; in
reality they may occur simultaneously). Some of these effects are introduced
by PCR (unequal amplification ratio, ‘plusA’ peaks, and polymerase slippage),
and some by electrophoresis (diffusion and ‘time warping’).

PCR Artefacts An ideal PCR reaction selectively replicates the sequence
defined by the flanking primers. When applied to a microsatellite locus, two
fragments of different length (assuming a heterozygote genotype) should be
produced (see figure 1.6a). The quantity of the product should be the same
because the proportion of the allelic fragment in the template DNA is the same
(equal number of maternal and paternal chromosomes). In real PCR reactions,
more complex behavior is observed.

First, the assumption of equal amplification efficiency does not hold. When
a mixture of template with different lengths is co-amplified, there is a tendency
that the shorter allele is amplified more strongly. In the extreme cases, one of the
alleles might not show at all [Ewen et al 2000], resulting in ambiguity between
a homozygote and a heterozygote with a very weak allele. Furthermore, the
relative efficiency seems to correspond to the length difference between the two
alleles (for real data examples, see figure 1.5, especially the marker D6S276).
There are (rare) exceptions to this rule, where the larger allele amplifies more
efficiently. Note that the ratio is highly reproducible and in general can be
considered the function of a specific pair of alleles. We can conceptualize the
result of this phenomenon as shown in figure 1.6b.

The second PCR effect is known as the ‘plusA’ effect, or 3’ untemplated
addition [Smith et al 1995b, Brownstein et al 1996]. The polymerase enzyme
might add a nucleotide at the 3’ end of the newly synthesized strand with certain
frequency. This effectively splits the product into two peaks (figure 1.6c). The
intensity ratio of the peak with the original length to the ‘plusA peak’ (1 bp
longer) depends on the frequency of the 3’ addition. This is determined by the
PCR reaction conditions. It is somewhat consistent within a batch of reactions,
and there might be considerable variation between batches. Within a reaction
tube, this effect is indifferent: all peaks are split with the same ratio between the
original and the plusA peak. The proportion of the plusA peak might be larger
or smaller than the main peak. Note that this effect is not observed in figure 1.5,
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ideal signal a)

↓ unequal amplification ratio

b)

↓ plusA untemplated addition

c)

↓ polymerase slippage

d)

↓ electrophoretic diffusion

e) 0 50 100 150 200 250

↓ electrophoretic “warp” & noise

observed signal f) 0 50 100 150 200 250

Figure 1.6: Microsatellite genotyping as a sequence of transformations.
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because of a biochemical trick called ‘PIG-tailing’ [Brownstein et al 1996] that
enforces plusA addition, resulting in complete shifts of the allele peaks. This
procedure reduces the complexity of the pattern and simplifies allele calling.
However, it is does not always work perfectly for all markers.

The most prominent PCR effect is ‘stuttering’ or ‘polymerase slippage’. Un-
like the previous two effects that are observed in PCR of any DNA fragments,
polymerase slippage is caused by the repeat sequence itself. This phenomenon
has been noted since the early attempts to amplify microsatellite using PCR
[Litt and Luty 1989, Tautz 1989, Weber and May 1989]. Several studies were
conducted specifically to investigate the cause and factors affecting this effect
[Hauge and Litt 1993, Hite et al 1996, Walsh et al 1996]. The stutter peaks
were found to differ from the main (template) peak by deletions (or less fre-
quently, insertions) of some repeat units. This leads to the formulation of a
(qualitative) model of stutter pattern generation [Hite et al 1996]. When the
polymerase enzyme attempts to replicate a repeat sequence, ‘slipped mispairing’
might occur. Temporary denaturation of the double-stranded DNA followed by
erroneous renaturation might result in loop formation either on the template
strand (resulting in deletions) or on the nascent strand (resulting in insertions).
Although these occur rarely, the recursive nature of PCR amplification exac-
erbates this effect. The products of one PCR cycle are added to the template
for the next cycle. This spreads the stutter peaks further away from the main
peak.

The extent of the stutter patterns depends on the alleles. Larger alleles tend
to have more spread out patterns [Perlin et al 1995]. This is consistent with
the fact that the larger the number of repeats, the higher the probability of a
slippage to occur in one replication cycle (although the probability of slippage
per repeat unit might be the same in all alleles). There are marker-specific
effects, possibly related to the type of repeats (di-, tri-, tetra-nucleotides; CA
or CT repeats, etc.) and the typical number of repeats for a marker.

Lastly, non-specific fragments might be observed in some markers. These
are fragments from other regions in the genome, which are flanked by sequences
that are co-incidentally similar to the primer sequences of the markers. These
peaks might result in ambiguous genotypes, although in many cases they can
be identified from the lack of stutter patterns.

Electrophoresis artefacts The ideal electrophoresis device will produce a
signal similar to that in figure 1.6d. Each peak is very sharp and evenly spaced
(because they differ by an integral number of nucleotides). However, in ad-
dition to migrating along the direction of the electric field, charged molecules
in electrophoresis also diffuses in all directions, resulting in broadening of the
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peaks. Because the extent of this broadening depends on the time the charged
molecules spends in the electrophoresis medium, the resolution decreases with
the fragment length. In addition to diffusion, electrophoresis also introduces
baseline trend and noise, which are typically encountered in any spectral anal-
ysis instrumentation.

Electrophoresis separates DNA fragments according to their mobility, which
means the domain (or ‘horizontal axis’) of the trace is measured in migration
time, instead of the fragment length (indicated by the scan numbers along the
axes of figure 1.6e and f). Although the relationship between fragment length
and migration time is roughly linear, there are systematic and random compo-
nents that distort the traces in the time domain. This results in uneven spacing
between the peaks in the DNA fragment ladder, and shifts in location of the
peaks from the expected integer positions (as shown by deviations from the grids
in figure 1.6f). A mapping between electrophoretic migration time and fragment
length needs to be found to correct this effect. This time warping effect varies
between lanes, markers, and batches of measurements. Typically, size-standard
fragments are used to approximately interpolate fragment sizes, which need to
be rounded to integer allele labels by a process called binning. Different binning
schemes, in addition to systematic differences in the electrophoretic behavior of
the SSF and the unknown fragments, may produce incompatible allele labels
when genotypes from multiple runs need to be combined [Ghosh et al 1997,
Weeks et al 2002]. This issue will be discussed in details in chapter 2.

De-multiplexing artefacts All fluorescent dyes emit across a broad spec-
trum, and there is always interference between the channels. Assuming linearity,
this cross-talk effect can be resolved by solving a system of four linear equations.
The ‘dye matrix’ (the characteristic spectrum of each dye) can be determined
from calibration samples [ABI 1996], or estimated from the data [Li and Speed
1999, Domnisoru 2000, Berno 1996]. These ‘color-separation’ methods may fail
when the molecules in some peaks are so concentrated that the fluorescence
intensity falls into the non-linear range of the photo-detector (i.e. the detector
is nearly saturated). The violation of the linearity assumption results in false
peaks (known as ‘color bleed’), when linear inversion is applied to separate the
signals. The contaminating false peaks sometimes cause genotyping ambiguity
and errors. So far, there has not been satisfactory solution to this problem,
other than making sure that not too much samples are loaded.

Another type of de-multiplexing errors are inter-lane leakage in slab gel
electrophoresis. This might be due to mistracking of the gel image or inherently
aberrant migration behavior of some lanes. Diffusion might also contribute to
this. Lastly, ‘stray alleles’ might be encountered. This is a case where the size
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of an allele falls outside the expected range of a marker, and the allele ventures
into the window of an adjacent marker.

All of the artefacts above complicate allele calling, particularly because the
extent of the artefacts vary between marker data sets. The transformations have
to be undone to get to the information of interest. Whether this is to be done
through stepwise ‘inverse functions’ (where deterministic procedures are applied
to the raw data to produce successively ‘cleaner’ data) or through a ‘generative
approach’ (where a model is used to reconstruct the complex patterns given a
genotype, followed by finding the best fitting genotype), the method needs to
take into account marker- and run-specific behaviors. We should also keep in
mind that some of the transformations are inherently ‘lossy’. The observed data
may not distinguish alternative genotypes. In such cases, errors can be avoided
only by discarding the data.

1.3.3 A review of existing solutions

Biochemical solutions

Because the sources of measurement effects are biochemical and physical, mod-
ifications of the laboratory procedures and experimental designs are obvious
ways to solve the genotyping problem. Not all markers are equally difficult
to score. Tri- and tetranucleotide repeats are known to have less stuttering,
and mapping sets comprising mainly this type of markers are available [We-
ber and Broman 2001]. The drawback is that they may not be as abundant
as dinucleotide repeats, in addition to having lower heterozygosity. The most
successful biochemical modification to reduce the artefact peaks is the use of
‘PIG-tailing’ [Smith et al 1995b, Brownstein et al 1996]. By modifying the PCR
primers, plusA addition can be enforced and thus eliminating the appearance
of split peaks. This method, however, does not remove the stutter peaks due
to polymerase slippage. Although modifications such as linear PCR [Odelberg
and White 1993] and using different types of polymerase [Hite et al 1996] have
been shown to reduce slippage in prototype genotyping, these techniques are
too expensive for industrial-scale genotyping.

Data analysis methods

For practical genotyping operations, there are various information processing
requirements: data acquisition and preprocessing, laboratory information man-
agement systems (LIMS), and graphical user interfaces for manually browsing
and editing the genotypes. Software packages supplied by instrument vendors
understandably focus on those more essential aspects. They do provide tools to
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facilitate allele calling, with varying degrees of automation, which are parts of
a fairly complex multi-step procedure.

The typical flow of data analysis, e.g. the one used by ABI PRISM GeneScan
and Genotyper software for the Applied Biosystems instrument [ABI 1996,
2001a], consists of:

Lane tracking The migration tracks of the samples on the raw two-dimensional
gel image are identified and traces (called ‘sample files’) are produced.
This step is required for slab gel electrophoresis only.

Color separation A dye matrix is applied to remove fluorescence cross-talk.

Baselining The baseline intensity trend is zeroed. Smoothing may be per-
formed to reduce noisy background fluctuations.

Peak identification The trace data are reduced to a list of peak locations and
their corresponding intensities (either the peak heights or peak areas).

SSF identification The known lengths of the SSF are assigned to their re-
spective peak locations.

Sizing of all peaks The SSF peaks are used to construct a sizing curve, and
the sizes of all other peaks are interpolated using this curve.

Identification of allelic peaks Artefact peaks are removed, leaving only at
most two peaks per sample, corresponding to the allelic fragments.

Binning The non-integer allele sizes are rounded by allocating them to ‘bins’.
This is essentially a classification problem for a mixture of clusters, where
the clusters are periodically spaced in a one-dimensional space.

Merging Genotypes from different runs are combined.

We can see that the various steps are concerned with removing measurement
effects introduced either by PCR, electrophoresis or multiplexing. The order
of the steps above is only one of many possible ways to sequence the artefact
removals. An example of slightly different strategy is to perform binning before
allele calling [Mansfield et al 1994], which takes advantage of the fact that the
stutter peaks can assist estimation of the bins. Another example is identification
of the fragments directly on the two dimensional slab gel image [Perlin et al
1995]. Some steps might also be combined. Stoughton et al [1997] proposed an
algorithm where the allelic patterns are matched directly using raw trace data
(without first reducing them to peaks).
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In the ABI GeneScan/Genotyper system, identification of allelic peaks is
the task that requires the heaviest human intervention7. The software allows
filtering unwanted peaks through a user-defined set of ad hoc rules [ABI 2001a].
This system is not intended for fully automated allele calling8.

As we have seen in figure 1.5(page 11), the compound effect of plusA, poly-
merase slippage and electrophoretic diffusion is a characteristic pattern of peaks
surrounding the allelic peak. The main peak is almost always the highest9, sug-
gesting that this property can be used to select the alleles. However, when the
two alleles are not too far apart, the patterns overlap and seem to follow the prin-
ciple of linear superposition. A procedure called “genotyping by deconvolution”
was suggested by Perlin et al [1994, 1995], Perlin [2000]. Several algorithms were
proposed [Perlin et al 1995]. The simplest ones use deconvolution techniques,
assuming shift-invariant allelic patterns, which is not realistic. Assuming that
the allele-specific patterns are known, they suggested that the allelic peaks can
be recovered by performing linear inversion. It is not clear whether these can
handle the potentially ill-conditioned nature of the stutter pattern matrices.
Inverting a matrix with bad condition number usually results in unreliable solu-
tions (and in this case, the allelic peak intensities might become negative, which
is unrealistic). They also suggested what might be a better method. Enumera-
tion of all possible genotypes is used to minimize the least-squares error between
the predicted and observed patterns. This is essentially a linear inversion with
model selection, which constrains the number of basis vectors used to at most
two. They did not indicate whether a non-negativity constraint was used. This
constraint could improve the reliability of the inversion.

Although linear models can be used to “deconvolve” the complex traces,
the solutions are not necessarily the genotypes. Least-square fitting will always
attempt to explain the observations as much as possible using all available degree
of freedom. This means that two distinct “alleles” will always be produced to
explain an observation, even if the genotype is a homozygote, due to the noisy
nature of the data. Additional procedures are needed to eliminate one of the
two coefficients that is “too small” to be an allele. This is not trivial because
true alleles can have small intensity due to unequal amplification efficiency. For
example, see the marker D6S276 in figure 1.5. In some traces the allele 226
and 228 are fairly weak, while there are contaminants, e.g. on the third trace
from the top, that may be equally strong. The second trace from the bottom
(a homozygous 228-228) is particularly difficult. Linear inversion will produce

7Note that manual scoring mentioned in figure 1.2b is performed using this software.
8 The company has recently released better allele calling system called GeneMapper; but

we are not yet familiar with the design and performance of this software.
9 In some alleles, especially with extensive stutter patterns, the highest peak might shift

to the next stutter peak [Perlin et al 1995, Miller and Yuan 1997].
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a second “allele” around the “right shoulder” of the highest peak.
The “genotyping-by-deconvolution” approach requires the matrix containing

the stutter patterns of each allele in a marker. This means that an extensive
“stutter pattern library” needs to be constructed from hundreds of markers
used in large genotyping projects. The training set needs to be carefully chosen
so that all alleles are represented. Perlin et al [1995] also indicated that the
library might not be valid if the reaction conditions are changed. An alternative
approach is to make the algorithm “data-adaptive” [Stoughton et al 1997]. The
basic idea is that it should be possible to construct the library on-the-fly from
the observations. Traces with well-separated allelic patterns are searched. Each
portion is then considered a characteristic allelic pattern (a basis vector of the
stutter pattern matrix). Deconvolution is then performed afterward, using a
least-squares procedure similar to Perlin’s enumeration method. The procedure
for constructing the allelic pattern library depends on the way the alleles are
distributed in the data. Each allele has to be found either well separated from
other alleles or as a homozygote.

Another interesting feature of Stoughton’s solution is that the patterns are
vectors with the same dimensionality as the trace data, unlike Perlin’s approach
where dimensionality reduction needs to be performed first (this also implies a
binning procedure). The consequence of working on the trace data is that the
peaks might not be aligned because there are “jitters” or small random fluctu-
ations in the time domain. Their solution to this is extending the enumeration
algorithm to search all possible small shifts of the allelic patterns.

Performance of the methods

Genotyping errors can cause significant loss of power in the downstream analysis.
The acceptable error rate depends on the type of application [Weeks et al 2002].
For genome centers that provide generic service, an error rate of <1% seems to
be the acceptable standard [Ewen et al 2000, Weber and Broman 2001, Weeks et
al 2002]. Weber and Broman [2001] mentioned than an accuracy of 94% can be
achieved for their automated allele caller10. Tedious manual editing is required
to bring down the error rate to 1%. Stoughton et al [1997] claimed that their
system was comparable to trained human reader. However, only two loci were
tested.

For the “genotyping-by-deconvolution” method, the original paper [Perlin et
al 1995] reported a test using real data from ABI-373 sequencer. 100% correct
calls were reported, but the test set was small (only 5 markers and 32 individual

10It is not clear if this is their true positive rate or 100% minus 6% error rate. Note also

that they used mostly tetranucleotide repeats that have less stutter artefacts.
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on each marker). The training set was derived from traces in the same gel. A
more extensive study was done later by a team at DeCode Genetics [Pálsson
et al 1999]. The “genotyping-by-deconvolution” algorithm was implemented
as a commercial product called TrueAllele (TA). When TA was used to call
7595 genotypes, 719 discrepancies was found when compared to that of manual
calls, corresponding to an error rate of 9.4%. To improve the performance they
created a post-processing software called Decode-GT, which implements a set
of rules for throwing away alleles based on criteria such as the peak heights,
TA quality value (possibly a measure of similarity in the linear fitting of the
stutter pattern model), and the peak ratio. DeCode-GT flags the observations
into ‘good’, ‘ambiguous’ and ‘discarded’ category.

In a test involving 6912 genotypes (from 72 markers and 96 individuals),
5806 (84.0%) were in the ‘good’ category, 78 of which were miscalled (1.34% of
the ‘good’ ones). The corresponding yield (the true positive rate) is not clear;
it is not mentioned explicitly if the true genotypes are available for all observa-
tions. Assuming that they are, the yield is 82.9%. [It is important to always
consider the performance as a trade off between the error rate and the yield at
a given cutoff, because it is always possible to reduce the error rate by choosing
more conservative criteria.] To reduce the error rate further, they suggested
re-examining the calls in the ‘good’ category if they belong to a marker that is
found to contain any miscall. The miscall is detected through various means:
control genotypes, miscalls in the ‘ambiguous’ category, inheritance checking,
and visual examination of the allelic ladder plot (superimposed traces). This
allowed them to bring down the error rate to 0.4% without manually examining
everything, although it is not clear how many of those in the ‘good’ category
need to be manually re-examined.

The three main instrument makers, Applied Biosystems, MegaBACE and
Li-Cor, have systems for automatic allele calling. However, there is a lack of
published report on rigorous and independent benchmark tests on their perfor-
mance. MegaBACE reported in their web site:11

A whole genome scan with 380 markers was performed by the Finnish

Genome Center in Helsinki. Correct calls were made for 96.21% of the

genotypes. Of the 4.79% incorrect calls, 99.75% had a quality score less

than 2 and 100% had a quality score less than 4. A researcher can save

valuable time by looking at only the genotypes with low quality scores.

They implied that a call made by the software was either correct or incorrect.
This means that either the data set was particularly clean (all genotypes could
be called), or that uncallable traces had been removed. Furthermore, the asso-

11 http://www.apbiotech.com/application/megabace/, on 27 September 2002.
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ciation between their quality score and the error rate cannot be used to fully
judge the performance, because the corresponding true positive rates are not
reported. This is not to say that their system is bad. We just point out the
difficulty in assessing the performance of alternative solutions due to the lack of
standard testing method and reporting. When comparing alternative methods,
it is also important to use the same data set, because the quality of genotyping
data can vary greatly, depending on the choice of the marker set, instrument
technology and the quality of the DNA samples. It is important to establish
a good testing method as well as a system to share trace data, if we want to
converge to a reliable, fully automated microsatellite genotyping system.

1.4 Overview of the Proposed Method

High-throughput microsatellite genotyping is a complex process with many as-
pects and steps [Hall et al 1996, Ghosh et al 1997, Li et al 2001]. The informa-
tion processing requirements covers many diverse areas such as raw data acqui-
sition and preprocessing, laboratory information management systems (LIMS),
allele calling, user-interface for manual examination and editing, error correction
based on pedigree information, and exporting data for downstream statistical
genetic analysis. As mentioned before, the allele calling aspect alone involves
many analysis steps.

All of these areas contribute to some extent to the ease and accuracy of allele
calling, but it is certainly impossible to develop a completely new integrated
system within the time frame and resources available for this thesis project.
Although not trivial, solutions in areas such as LIMS and graphical user in-
terfaces can be considered straightforward applications of software engineering.
We therefore decided to concentrate on the problems whose lack of automation
consumed the largest portion of human analysts’ time and whose development
requires research in statistical and numerical algorithms. These are: 1) cor-
recting electrophoretic distortions and 2) recognizing underlying genotypes that
give rise to the stutter patterns.

These two topics cover the sizing, binning and merging problems, as well
as identification of allelic peaks (see page 17). Explicit peak identification is
not needed in our approach (to be discussed below). For the other steps, lane
tracking, color separation, baselining and SSF identification, we still rely on the
output of the existing software, e.g. ABI GeneScan. We did find that the out-
put of vendor-supplied color separation and baselining algorithm may contain
‘algorithmic artefacts’ that may contribute to allele calling errors, particularly
‘color bleed’ artefacts due to inadequate color separation. However, anomalies
due to these effects are reasonably rare (or can be identified when occurring
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systematically), that we consider the existing preprocessed signals sufficient for
our purpose of developing an allele calling method. Although we have started
researches in this area (continuing Li and Speed [1999]), the results for mi-
crosatellite traces are not conclusive enough to be included in this thesis.

1.4.1 The unit of analysis

Our method processes data from one marker at a time, but simultaneously
examining traces from different individuals in the same electrophoresis run. In
figure 1.4, a marker data set corresponds to the trace intensity values from
one dye channel, in a window defined by the yellow or purple bar that covers
all possible alleles of the marker. This marker interval should be specified to
include the whole allelic pattern, including the trailing stutter peaks. Some
safety margins at both ends might be included, but care must be taken not to
include the peaks from adjacent markers or noisy contaminants. If commercial
mapping sets are used, the marker definitions can be automatically specified
from existing databases (such as the ABI panel guide [ABI 2001b]), adding
±5 bp on either side of the range specified by the database (which is intended
to cover the main allelic peaks only). Manual examination of plots such as
in figure 1.4 is recommended to ensure the intervals include the appropriate
peaks12. Usually after fine-tuning the boundaries on data from a few runs,
the intervals can be applied confidently to new data without looking. Note
that different running conditions or different instruments might need different
interval definitions.

In well-optimized mapping sets (such as the ABI Linkage Mapping Sets), the
markers have been arranged to include a sufficient safety margin between them.
In a few rare cases, the intervals of two adjacent markers may overlap (usually
this is caused by only a few alleles). The boundary has to been chosen such
that the inclusion of ‘stray alleles’ into the wrong marker interval is minimized.
This will necessarily throw away a few alleles and cause calling errors. Currently
we have no solution for this problem except to take notes and manually fix the
genotypes of the truncated traces. An ‘engineering’ solution to this problem
might be devised by blanking out the trace signals of stray alleles (manually
identified). Automatic detection of such occurrences is complicated because it
requires co-analysis of adjacent markers, assigning the joint genotype of adjacent
markers to the combined trace intervals. Although not impossible, it will be
computationally expensive.

We do not combine traces from different electrophoresis runs. This is because
there might be run-specific systematic effects, even if the running conditions are

12 Graphical software to do this is being developed.
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assumed to be the same (controlling all subtle variations of physical conditions
is not possible). One example is shown in figure 1.5. The traces in the columns
D6S257 and D6S257* are from the same marker, but different runs. Slightly
different electrophoresis conditions might be responsible for the ‘trailing blurs’
in D6S257*. Optimal matching of the allelic patterns clearly requires different
templates for the two sets. Other effects that might vary between runs are the
mobility relative to the SSF and plusA addition13.

Our unit of data analysis is therefore a set of traces from all lanes in the same
run, sliced from the whole electrophoresis range according to the marker interval
definition. This set will be identified by the panel14, box, and marker name (see
figure 1.4), such as p24/001/D18S474. We will refer to this set of traces simply
as a ‘marker data’ or the data set from one marker. This is admittedly a slight
abuse of terminology, and implies that, for example, p24/001/D18S474 is a
different ‘marker’ from p24/103/D18S474. Most steps in our method do treat
them separately (except when the final genotypes from the two sets are merged
at the end of the process).

1.4.2 The general approach

We view allele calling as a process of modeling the sequence of transformations
in figure 1.6 (page 13). The unknown variables are the genotypes (which are of
interest) and the parameters governing the processes that generate the complex
patterns. Two properties of the processes that we should take advantage of
are reproducibility and regularity. Reproducibility means that all alleles and
electrophoresis lanes behave uniformly, at least in the same run. This allows us
to assume the model parameters to be the same for all traces in the same marker
data15. Regularity means that there are relatively simple ‘laws’ that apply to
all markers equally, differing only in a handful of parameters (such as the extent
of slippage effect). A human analyst that has been trained on data from just
relatively few markers can easily call the alleles of new markers, although the
allelic patterns might be different from those he or she has encountered before.
This means ‘training’ a computer program to perform the same task should be
training in general principles, not allele- and marker-specific information. The
advantage of this approach is that the same algorithm may work on all data,
including those measured under different conditions. The implementation is
simplified because there is no need for marker-specific calibration and a large

13 This is actually a systematic effect affecting PCR reaction batches, but they often coincide

with electrophoresis runs because of the way the samples are organized.
14 The panel name is a redundant identifier since each marker appears only in one panel,

but this is convenient for data management.
15In fact, this is the main rationale for defining our unit of analysis.
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database to store the parameters (such as the stutter pattern library in Perlin
et al [1995]).

The adaptive approach is not new. We have mentioned before the method
of Stoughton et al [1997], where the allelic patterns are searched for in the data,
relying on the knowledge that the extent of the stutter peaks is localized around
the main allelic peak. This approach, however, relies too much on the distri-
bution of alleles in the data. If an allele is never observed in isolation, either
in a homozygote or in a heterozygote with an allele that differs significantly in
length, it may be missing from the empirically constructed patterns. In gen-
eral data analysis, there are methods such as independent component analysis
(ICA) [Roberts and Everson 2001], where assumption of linearity and sparse-
ness can be used to simultaneously estimate the basis vectors and the ‘hidden
variables’. Archetypal analysis [Cutler and Breiman 1994] and ‘non-negative
matrix factorization’ [Lee and Seung 1999] perform similar tasks, with a con-
straint that both the patterns and the hidden variables are non-negative (which
is appropriate for data such as electrophoresis traces). Cluster analysis can be
seen as a special form of ICA, where only one of the hidden variable compo-
nents may have non-zero value (and the value is one). Initially, this led us to
consider an adaptive allele calling approach based on similar principles, with
non-negativity constraints and a requirement that at most two of the hidden
variables have non-zero values. Although we have managed to construct a pro-
totype algorithm that works along these lines (and incorporating the constraint
that a heterozygote pattern is a linear combination of the constituent allelic
patterns), we soon encountered a inherently difficult problem: the number of
genotypes (pair of alleles) in a marker can be quite large. For a marker of, say,
12 alleles, there are 1

212(12 + 1) = 78 genotypes. The typical sample size of a
marker data is at most 96 traces, leaving most clusters (corresponding to geno-
types) underpopulated. Estimation of the allelic patterns became unreliable,
especially when the alleles are present only a few times in the data set (which
is typical for microsatellite markers with many alleles).

The approaches above can be considered as ‘non-parametric’, because the
allelic patterns are derived from the data, with minimal assumptions about how
they are generated. If we are willing to make stronger assumptions about the
patterns, such as by specifying a parameterized mathematical function that pro-
duces the stutter patterns, the number of parameter that needs to be estimated
can be significantly reduced, leading to more robust estimates. Miller and Yuan
[1997] proposed a rudimentary model for stutter pattern generation, based on
a simple convolution where the main allelic peak is ‘spread’ to the adjacent
fragment length positions, modeling a deletion and an insertion slippage by the
polymerase enzyme, each with a certain probability. This convolution is then
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applied repeatedly to simulate cycles of polymerase chain reactions. The au-
thors noted, however, that the model was only a ‘first-order’ approximation,
and did not take into account the fact that real allelic patterns vary with the
allelic length16. Furthermore, it did not incorporate the non-templated plusA
effects and unequal amplification ratio. Nevertheless, we believed that this
approach was promising and we took it further by elaborating the model to
include length-specific probability of slippage, plusA effect, and electrophoretic
diffusion, covering almost all processes in figure 1.6. This model is the main
engine of our allelic pattern recognition method. The details of the model and a
method for optimizing the parameters directly from the data will be presented
in chapter 3.

Including electrophoresis “time warps” should complete the model, allow-
ing us to fit the theoretical patterns of a pair of alleles to an observed trace.
However, it is difficult to specify a simple parametric model for the time warps.
We cannot just slightly shift the patterns around like in the algorithm proposed
by Stoughton et al [1997] because our allelic patterns are generated based on
the allelic lengths, which do not correspond to the allelic sizes (migration rate
relative to the SSF) in a simple way. In addition to that, repeatedly generating
the warped versions of the patterns will be computationally expensive (we need
to this while simultaneously estimating the allelic pattern parameters, which
requires an iterative method). Therefore, the warp correction is performed first,
using a method called ‘trace alignment’, which produces a trace data matrix
where all peaks corresponding to the same DNA fragment are aligned across
different lanes, and all the peaks are evenly spaced and located right at the
integer points of a new scale which corresponds more closely to the ladder of
DNA fragments seen in the data. The trace alignment method is the subject of
chapter 2.

An allele calling method, which is essentially a classification method, is not
complete if it cannot give estimates of the error probability of the calls, or at
least a sort of quality scale which can be used to rank the genotypes accord-
ing to the confidence of the calls. It is inevitable that some DNA samples
will fail to amplify, or will be amplified weakly. Some markers may also con-
tain systematic contaminants, due to high background signals, non-specifically
amplified fragments, and color bleed. Some alternative genotypes might be in-
herently non-identifiable from the trace data (for example the allelic intensity
ratio might be on the ‘border-line’ between a homozygote and a heterozygote).
Those cases certainly need to be flagged, preferably by a quality indicator with
a continuous value. Thus, assessing the performance of the allele caller can be
done using a receiver operating characteristic (ROC) curve, or similar curves

16The convolution model is clearly time-invariant.
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that indicate the trade-off between error rate and yields, as a function of the
quality score cutoff. More importantly, the users of the called genotypes can
flexibly choose a trade-off that is appropriate for their specific genetic analysis
applications.

Quality indicators have a central role in our allele calling method. Instead of
an attribute assigned to the genotype picked by the caller, it is computed to all
possible genotypes, and the genotype with the best quality value is the call (or
alternatively, when the trace data is ambiguous, a few genotypes with similarly
good quality values may be reported). The quality value is derived from various
feature variables based on the trace and the genotype. This will be detailed in
chapter 4.

1.4.3 Implementation

A fully integrated implementation in a laboratory system is outside the scope
of this thesis. Such implementation will require a lot of software engineering
work related to data management and graphical user interface software. Our
focus here is only on ‘algorithmic engines’; small programs that perform the
computationally intensive core algorithms of our allele calling system. It is still
wise to consider some issues related to data exchange and operating systems,
because we do want the programs to be portable and independent of the setup
in a particular laboratory.

We need to be able to process data from a variety of instruments. Although
all the data that we used in this project come from Applied Biosystems (ABI)
instruments, nothing specific to the ABI system is assumed. The core algorithms
only require a set of trace data, along with SSF information. A simple common
data format for these types of information has been defined. It uses the structure
of the filesystem (directory hierarchy and a strict file-naming convention), and a
handful of file with simple formats (ASCII texts and a trivial binary format for
the trace intensity arrays). We have written a perl17 script for extracting the
relevant data from ABI sample files into the common data format. It should
not be too difficult to adapt this script for the trace files produced by other
instruments.

There are many procedures in our system, and instead of writing a single
complex program, the procedures are divided into many small programs (writ-
ten either in C18 or perl). This makes it easy to debug each component or test
alternative approaches. The common data format serve as a ‘hub’ for communi-
cation between these components. The intermediate result of various algorithms

17www.perl.org
18ANSI/ISO/IEC 9899 standard or other compilers that support inline keyword and vari-

able length arrays such as GCC (www.gnu.org).
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can be dumped to the common data format to allow examination by programs
such as generic data analysis packages (like Mathematica19 or R20). The core
algorithms themselves were written in C for maximum efficiency.

The common data format also facilitates development of graphical user in-
terface software. The hierarchical file system is highly portable and the same
directory structure can be mounted on UNIX or Linux machines (where the
computation engine might be run) and on Apple Macintosh or Windows where
the analysts can use a graphical user interface (written in Java) to browse and
edit the trace data and genotypes. The interface is currently under development
as a separate project (Keith Satterley, unpublished), and we will not discuss this
any further. Although the common data format is only a collection of simple
text files, they are designed with the principles of relational database in mind.
Exporting the data, including the aligned trace data matrix, to other databases
should only involve writing simple scripts.

19www.wolfram.com
20 www.r-project.org
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Chapter 2

Trace Alignment

2.1 Background

As outlined in chapter 1, the proposed allele calling system has two main steps:
1) trace alignment that compensates for electrophoretic time distortions, and
2) recognition of complex allelic patterns. The pattern recognition step treats
the trace data as a multivariate data matrix, where the different electrophore-
sis lanes are the observation vectors, and the time point measurements along
each trace are the variables. This treatment requires that we can identify the
same variables across all lanes. The problem is that we cannot equate the time
points of the raw data with the variables, because the lanes behave differently.
Therefore, we need to find the mapping between electrophoretic migration time
and the DNA fragment length. The concept of trace alignment is illustrated in
figure 2.1. This chapter describes a method for estimating the mapping and for
normalizing the time variations by resampling the trace data. We will examine
the nature of the time variations first.

2.1.1 Electrophoresis of DNA fragments

The distortions in the time domain are introduced during electrophoresis. Elec-
trophoresis is an analytical technique for separating soluble ions according to
their charge and other physical properties, by placing them in a semi-solid,
porous medium under an electric field created by two electrodes placed just
outside the “starting” and “finishing” lines. Charged molecules will migrate
toward the finishing line, driven by the electric field. The larger the charge
on a molecule, the stronger the force of attraction. However, the medium also
restricts the movement of the charged molecules selectively, depending on their
physical properties and how they interact with the medium. The net result is
that each type of molecule has its own migration rate, or velocity (measured
in the distance traveled per unit time). In the case of microsatellite genotyp-
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Figure 2.1: Trace alignment. Panel a shows preprocessed (color-separated and base-

lined) trace data from several lanes, from marker D1S2800 run on a ABI-3700 capillary

electrophoresis machine. The horizontal axis is the detector sampling time, while the

vertical axis of each lane is the fluorescence intensity. Each vertical gray line connects

time points across different lanes that correspond to the same DNA fragment length.

Panel b shows aligned representations of the same traces as in panel a. The trace

data have been resampled and interpolated. Not only do the horizontal scales of all

lanes become identical, but also the spacing between the DNA fragment peaks become

uniform and the center of the peaks coincide with the integer points on the scale.
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ing, fragments with different lengths will migrate with different velocities. To
neutralize the effect of base composition and secondary structure (or folding)
of the DNA molecules, denaturing conditions are used such that the velocity of
a fragment is largely a function of the number of bases. The term ‘mobility’
is often used for the characteristic migration behavior of a type of molecules,
under certain running conditions. Technically, mobility is the velocity per unit
of electric field strength [Riekkola and Jonsson 2001]. The field strength can
be assumed to be constant for each run and therefore, in practice, ‘mobility’ is
often used interchangeably with ‘velocity’ (or even other related measures such
as migration distance).

The relationship between the electrophoretic mobility and the physical prop-
erty of the ions (such as chemical structure and size) is complicated, and depends
greatly to the environmental conditions such as temperature and ionic strength
of the buffer solution. For denatured DNA molecules, it is well-established that
the migration time is roughly proportional to the fragment length [Southern
1979a, Carrano et al 1989]. This is illustrated in figure 2.2. Subtle changes
in running conditions as well as idiosyncratic behavior of individual fragments
might contribute to small systematic deviations from the linear relationship.

2.1.2 Size-standard fragments

The migration time cannot be used to identify the same fragment across dif-
ferent lanes, as illustrated in figure 2.1, and more clearly, in figure 2.3. This is
because different lanes in the same gel might be loaded at different times, so
that there are unknown lags. Additionally, in a large slab gel, conditions such
as temperature and electric field strength might not be uniform throughout the
gel. In capillary electrophoresis, each capillary tube might behave as if it is a
separate “gel” [Gill et al 2001]. Thus, each capillary has its own characteristic
running environment.

To normalize the variations and allow fragment identification, a set of frag-
ments with known lengths are included in every lane [Mayrand et al 1992, Ziegle
et al 1992]. One color channel is dedicated to the size-standard fragments (SSF)
to avoid confusion with the unknown samples (see the red traces in figure 1.4,
page 10). The fragments are chosen such that the pattern of the peaks can be
used to assign the known lengths to the appropriate peaks. For example, the
widely used ABI GS500 size-standard fragments consists of fragments with the
length of 35, 50, 75, 100, 139, 150, 160, 200, 250, 300, 340, 350, 400, 450, 490,
500 bp. Note that they are mostly fragments spaced at 50 bp intervals, with a
number of extra fragments irregularly placed to allow unambiguous identifica-
tion.

30



a)
50 100 150 200 250 300 350 400

length HbpL1000

2000

3000

4000

5000

m
ig

ra
tio

n
tim

e
Hscan

#L
scans = 535.578 + 11.2451 length
R2 = 0.998934

b) 100 150 200 250 300 350 400
length (bp)

-20

0

20

40

60

re
si

du
al

 o
f m

ig
ra

tio
n 

tim
e 

(s
ca

n)

c) 100 150 200 250 300 350 400
length (bp)

-25

0

25

50

re
si

du
al

 o
f m

ig
ra

tio
n 

tim
e 

(s
ca

n)

Figure 2.2: The relationship between fragment length (the number of nucleotides)

and electrophoretic migration time. The data points correspond to fragments of known

length (from ABI GS500 size standards, run on an ABI 377 machine). Panel a shows

a straight line approximation using linear regression, with a very good fit. However,

the residual plot (panel b) shows deviations around ±30 scans. Panel c shows residual

plots of the same set of fragments, from 93 lanes in the same gel (linear fit is per-

formed separately for each lane). This plot shows that the deviations are systematic

(reproducible across different lanes).
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Figure 2.3: Lane-specific variations in migration time. The traces of ABI GS500

standard fragments were run on a slab gel electrophoresis (ABI-377), panel a, and

capillaries (ABI-3700), panel b. Lane number 1, 6, 11, 16, . . . are chosen to illustrate

variations across the gel in panel a. Usually, even- and odd-numbered lanes are loaded

at slightly different times, and the alternating lags can be seen on every other traces, in

addition to the trend associated with the lane positions. In capillary electrophoresis,

all lanes were started simultaneously, but each tube behaves differently.
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Figure 2.4 shows how the SSF can be used to normalize migration time
variations. The locations corresponding to a specific fragment relative to the
SSF peaks are fairly constant across different lanes. We will use the term size
to refer to this relative location, measured in basepair (bp). Although it has
the same unit with the true fragment length, it is not identical. A size can
have fractional values due to measurement errors, while the length is always an
integer. Furthermore, as we will see shortly, the relationship between fragment
length and size is not simple due to various biases.

An interpolation method must be used to determine the size based on
sparsely located SSF. This procedure is called sizing. A curve is fitted to the
SSF points (such as that shown in figure 2.2a), and the relationship between
time and size can be looked up using the curve. The mapping between time and
size can be used to resample the traces, as in figure 2.4b, or to assign sizes to the
peaks in the traces with the original time scale. The latter is the more common
practice, used by systems such as the ABI Genescan/Genotyper software. [This
is because their approach is based on peak identification, where each trace is
reduced to a set of abstract ‘peaks’, defined by a location and an intensity value
(either the peak height or peak area).]

Various studies found that using SSF to size fragments is a reasonably precise
method, with standard deviations typically less than 0.3 bp [Mansfield et al
1996, Idury and Cardon 1997, Wenz et al 1998]. In most cases, the precision is
enough to distinguish alleles differing by 1 bp, although there are a few markers
where some alleles might deviate by more than 0.45 bp [Idury and Cardon 1997],
resulting in ambiguity of identification. In addition to the specific markers, the
precision depends on the instrumentation [Deforce et al 1998] and, certainly, the
electrophoresis conditions that affect fragment resolution (usually these have
been well-optimized in practical genotyping protocols).

The choice of the curve fitting method also affects the precision [Ghosh et
al 1997]. Of several sizing methods available in the ABI GeneScan software
[ABI 1996], the local Southern method [Southern 1979b, Elder and Southern
1983, 1987] was found to be the most precise1. The problem of fitting a curve
to SSF points can be considered a generic curve estimation problem, where
many standard methods are known in other fields, e.g., Ramsay and Silverman
[1997], Eubank [1999], Loader [1999], Hastie et al [2001]. Although the precision
is limited by the underlying physical system, it is worthwhile to investigate
alternative sizing methods that may contribute less to the imprecision.

1Note that only five methods are offered: 2nd and 3rd order polynomial least squares, local

and global Southern, and cubic spline.
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Figure 2.4: Using SSF to normalize migration time variations. The four black traces

are different individuals with the same genotypes (140, 146) of the marker D18S452,

while the red traces are some size-standard fragments (with known length of 139 and

150 bp, as indicated above the peaks). On panel a, the horizontal axes are the original

time of measurements, and variations in time can be seen clearly. A sizing method

is used to resample the SSF traces so that they are aligned (panel b). The unknown

traces are also resampled co-ordinately. [The exact sizing method is not relevant to

our point, and will be detailed later.]
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2.1.3 Sizing bias

Although sizing based on SSF is adequately precise, in the sense that the same
fragment can be identified across lanes, the method is not accurate, in the
sense that the estimated size can be quite far from the true length (the number
of nucleotides). In general, the bias can be length dependent. That is, the
systematic deviation from the true length might vary across different fragment
lengths. We will refer to this as a ‘bias curve’. Various factors may contribute
to sizing bias:

1. The fluorescent dyes attached to the unknown fragments are different from
that attached to the SSF fragments. Because the dye molecules are bulky,
they can significantly shift the mobility [Hahn et al 2001, Tu et al 1998].
Depending on the type of the dyes, size differences up to 7 bp might be
encountered, with biochemically similar dyes, e.g. fluorescein derived or
rhodamine derived, behaving similarly. Furthermore, the bias is not con-
stant for all fragments but length dependent, following a certain curvature
(figure 2 in Hahn et al [2001]).

2. The sequences of the unknown fragments are different from those of the
SSF. Although under denaturing conditions the migration rate is roughly
a function of the length, sequence-specific properties such as base com-
positions and secondary structure formation might still have significant
effects. Weber and May [1989] found that the mobility of the comple-
mentary strands of microsatellite fragments, which has exactly the same
length, differed. This was further investigated and confirmed by Saitoh et
al [1998]. It is conceivable that, in general, different types of repeat, e.g.
(CA)n vs. (CTG)n repeats, will have different bias curves.

3. Sequence-specific biases might also affect the SSF [Mayrand et al 1992].
For example, figure 2.2c shows that the sharp turn at the fragment 150 bp
is systematic. This is reproducible even across different runs (data not
shown), meaning that the effect is not due to the particular running con-
ditions (which might be responsible for the overall curved trend), but due
to idiosyncratic behavior of the SSF, particularly the 150 bp fragment.
Because sizing of unknown fragments is based on the SSF points, one
anomalous SSF point may affect all unknown fragments in the two inter-
vals flanking the point, especially when the curve-fitting method is sensi-
tive to this deviation. Using more carefully designed SSF might alleviate
this problem [Mansfield et al 1996]. However, the ABI GS500 fragments
are widely used SSF, including in genotyping data used for this project.

4. Different running conditions (such as temperature, batches of reagents,
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laboratory protocols, and instrumentation) may change the bias curve.
An example is shown in figure 2.5, where the same fragments migrate
differently, relative to the SSF, in capillary and slab gel electrophoresis.

5. The choice of the curve-fitting method may introduce artefactual biases.
For example, straight-line regression (as shown in figure 2.2) certainly gives
different values than linear interpolation (simply connecting the points by
straight lines). Although no sizing method can remove the biases inher-
ent in the physical design, an ideal sizing method will not introduce its
own biases. A curve that follows each SSF very closely, for example inter-
polative methods such as Lagrange or splines, might be sensitive to some
idiosyncratic fragments. On the other hand, ‘smoothing’ method that av-
erages many points might increase the variance because faraway points
can have significant influence, although physically they might behave in-
dependently. This is the issue of bias and variance trade-off, well-known
in the area of curve estimation [Hastie et al 2001, page 37].

All of the effects above can be summarized by a marker-specific curve specifying
length-dependent biases. The effect of this curve can be seen even in data from
the same run. The mean size of a fragment may not be close to an integer (which
should be if the unknowns and the SSF migrate in the same way). Furthermore,
the distances between adjacent allelic peaks may not be integers either, because
the bias curve is not constant. Also known as ‘allelic drift’ [Idury and Cardon
1997] or ‘waving trends’ [Zhao et al 1998], this phenomenon is illustrated in
figure 2.6. The drift means that the unknown fragments migrate either slightly
faster or slower than the SSF. The relative rate might also change, as shown by
the curvature in figure 2.6c. A constant relative rate would have appeared as a
straight line with a certain slope in the plot.

2.1.4 The implications of sizing errors to allele calling

The lack of sizing precision for some markers is an inherent loss of informa-
tion and cannot be remedied. Calling errors can be avoided by flagging such
markers, by looking at the estimated sizing variance [Idury and Cardon 1997].
A more refined method is by looking at the alleles. If they deviate by more
than, say, 0.3 bp, the observations are discarded [Pálsson et al 1999]. For some
markers, we can assume that alleles only occur at repeat-unit length, e.g. every
2 bp for dinucleotide repeats. Thus, deviations by more than 0.5 bp (but less
than 1 bp) can be treated by rounding to the nearest multiple of repeat-unit
length. However, when alleles differing by 1 bp do occur, they might be called
erroneously. Markers that may have true alleles differing by non-repeat-unit
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Figure 2.5: An example of instrument bias affecting the mobility of microsatellite

fragments (black) relative the size-standard fragments (red). The same PCR products

(of 5 different markers) are loaded into ABI-377 (slab gel) and ABI-3700 (capillary)

instruments, along with GS500 size-standard fragments. The figure above shows the

traces from the two electrophoresis runs. The two panels show different portions of

same traces (100–225 bp and 250–375 bp). The horizontal axis has been transformed

such that the SSF peaks are aligned, and the traces are “warped” accordingly by re-

sampling and interpolation. In panel a, the relative migration is faster in the capillary

than in slab gel. When the unknown fragments in the two runs are compared, a shift

of ∼4 bp can be seen on the cluster of peaks around 120 bp. This shift progressively di-

minishes to about 2 bp around 215 bp. Further shift is seen for higher range (panel b).

In fact, at 340 bp, the relative migration is slightly slower in ABI 3700. Note that this

bias cannot be fixed by the choice of sizing methods, since they cannot change the

order of fragment mobilities.
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Figure 2.6: Bias curve and allelic drift. Panel a shows the histogram of 184 allelic

sizes from marker D18452 (the stutter peaks have been removed and only the location

of the centers of the allelic peaks are used). The length of the alleles is indicated above

each ‘cluster’ of sizes. [Note that these lengths might differ from the true length by an

arbitrary integer. For illustration, we can assume the labels are the true lengths.] The

histogram’s bin size is 0.1 bp. Panel b shows the empirical cumulative distribution

(suggested by Li et al [2001], except that they flip the axes), which show the actual

location of each points. On both panel a and b, we can see an example of “allelic

drift”, where the size drifted slightly from the length across the range. If the length

are known (or presumed), the bias curve and the size variation for each allelic length

can be seen more clearly by plotting size minus length against the length (panel c).
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lengths may be recognizable from the frequency of occurrences of such alleles
and their consistent locations.

The implications of sizing bias are more serious. In some applications, such
as forensics and paternity testing, mis-identification of alleles is unacceptable.
The problem of sizing bias is avoided by running an ‘external standard’ which
is a mixture of all known alleles for a given marker. These ‘allelic ladder’
fragments are labeled using the same fluorescent dye and run on lanes next
to the unknown lanes [Puers et al 1993, Smith 1995a]. Identification can be
performed by directly comparing the sizes of unknown alleles with those in the
allelic ladder. This approach, however, is too expensive for applications such
as genome scans involving hundreds of markers2 and many individuals. Allelic
ladders must be painstakingly constructed and maintained for all markers. They
also take up many electrophoresis lanes that are otherwise useful for genotyping
the unknowns.

For other downstream applications such as disease mapping and marker-
assisted breeding, the consequences of sizing bias are not too dire, because it
is actually not important to know the exact allelic lengths. Most statistical
genetic analyses consider allele labels as unordered enumeration of possible ge-
netic states. As long as the alleles are labeled consistently in the whole data set,
any labeling scheme will do (including arbitrary re-coding and permuting the
labels). However, it is convenient if the allele labels are chosen to correspond
to the true length. When new alleles are encountered, their labels have already
been allocated (there is no need to ‘squeeze in’ out-of-order or inelegant labels).
More importantly, combining data from different sources is impossible if each
source uses its own arbitrary labeling scheme.

For most purpose it is sufficient to use the relative length of an allele. This is
a number that differs from the true length by an unknown constant integer (but
consistent throughout the data set). Assigning consistent relative length is more
difficult that simply rounding the sizes to the nearest integer. For example, if
such rounding procedure is applied to the allele sizes clustered around 133.5 bp in
figure 2.6, some sizes will be rounded up while others rounded down, depending
on whether they are more or less than 133.5. Proper rounding procedure should
put all alleles around 133.5 under the same label, or ‘bin’. Whether the label
is 133 or 134 (or other integers, for that matter) is arbitrary, provided that the
labels of other bins are spaced accordingly, such that the difference between
adjacent allelic labels do not differ too much from the spacing between adjacent
clusters of allelic sizes. In other words, the bias curve, such as that implied by
figure 2.6c, should be as smooth as possible.

The procedure of identifying the periodic clusters of allele sizes is known
2The ‘human identification’ marker set used in forensics consists of only a few markers.
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as ‘binning’. Manual binning it is quite intuitive and straight-forward. Even
before the advent of automated fluorescent technologies, binning could be done
by directly ‘counting the DNA ladder’ seen in the photographic gel image. We
have no access to such data, but the concept can be illustrated by construct-
ing a ‘pseudo-gel’ image from the trace data of automated electrophoresis (fig-
ure 2.7a). When examining such image, a trained analyst would consider all
lanes simultaneously, mentally constructing a ‘DNA ladder’ associated with pe-
riodic locations of the fragments. Although there is no lane-specific SSF and a
sizing curve is not usually constructed3, the alleles can be scored by counting
the number of stutter peaks separating them. In traces with well-separated al-
leles, such as those near the bottom of the image in figure 2.7a, it is possible
to correctly assign the relative length by counting the peaks in the intervening
region, seen in other lanes. A similar procedure can be used for automated
fluorescence trace data (the method is called ‘direct counting’ by Haberl and
Tautz [1999]). An alternative way to view the fragment ladder is by plotting all
traces overlaid as in figure 2.7b. This plot can be used to manually identify the
‘bins’.

Several automatic binning procedures have been published [Idury and Car-
don 1997, Ghosh et al 1997, Li et al 2001], in addition to proprietary algorithms
from instrument vendors. These methods take as their input the allele sizes
after they are called (such as those in figure 2.6a), instead of the raw trace data.
This means that the periodicity of the stutter peaks, which may help identifying
the bins, are ignored. However, the methods are easier to implement (because
they operate on a set of points instead of on a data matrix) and the allelic
sizes are easily available as the output of existing (semi-automatic) allele calling
software.

In the approach taken by Idury and Cardon [1997] the bins are specified by
a set of bin boundaries with a constant spacing (therefore assuming that the
bias curve is a straight line). The two parameters (for bin spacing and offset)
are estimated by minimizing the variance of allele sizes within each bin. This
procedure will not be optimal for markers where the bias curve is not linear
(such as the one in figure 2.6). A slightly different approach was proposed by
[Mansfield et al 1994]. Binning is applied to all peaks including the stutter peaks
(after the peak identification steps; thus not using all trace data). A histogram
similar to that in figure 2.6a is constructed, and after some filtering steps, the
highest peaks are used as the bin locations. We can therefore consider this as
a non-parametric method. As opposed to that of Idury and Cardon [1997], the
bin locations are not constrained by the requirement of linear biased curve. It

3In this technology, care is taken that the electrophoresis of all lanes are synchronized as

much as possible, to allow direct comparison across lanes (manually).
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is not clear how Mansfield’s method perform in the presence of noisy peaks4.
There is an inherent difficulty with binning based on the patterns found in

the data. There are certain markers where the allelic distributions are ‘dis-
connected’. That is, the alleles are distributed in separate clusters, intervened
by significantly wide regions where no alleles are observed (see figure 2.8). Al-
though the relative lengths within each cluster can be reliably estimated, the
length difference between alleles from different clusters might not be, because
there is no ladder of peaks that can be used to count the difference.

Large genotyping projects might be a collaboration of many labs using differ-
ent measurement conditions, consequently with different biases. Even within the
same lab and instrumentation, the environmental conditions (or subtle proper-
ties in the batches of reagents) might change during the course of a large project,
which may last several years. Sizing bias can cause problem in merging data
from different sources. This is also illustrated in figure 2.8, where the sizes of
the same alleles differ between ABI-377 and ABI-3700 instruments. Binning
certainly needs to be performed first on each data set (for most markers this
can be done reliably, without the ambiguity exemplified in figure 2.8). Combin-
ing the integer-valued relative lengths of the alleles is easier than combining the
real-valued sizes. The problem is how to resolve the unknown integer constant
in each data set.

One possible way is by including a control individual in each run [Knowles
et al 1992, Ghosh et al 1997]. One example is the commonly used CEPH family
member #1347–02. The difference between the known lengths of the control
and the length from binning is the constant adjustment to be made for all
other alleles in the run. However, CEPH controls may occasionally fail (or
migrate erroneously). In the cases where the binning within each run might
be inconsistent (such as when the ladder is disconnected), the CEPH genotype
may not be able to completely resolve the lengths, because it only has two
alleles (which might even be homozygous). Alternatively, in many cases we
may assume that the allelic frequency profiles of a marker are fairly similar
across different runs5, such as those in figure 2.8. Adjustment can thus be made
based on pattern similarity between the profiles. If the binning in each run is
consistent, a simple integer shift can be used to synchronize the allelic lengths,
say by maximizing a similarity score between the shifted profiles.

Whichever method is used to merge genotypes from different sources, allele
4The details of the algorithm were not published. It was a part of the, now defunct,

Pharmacia ALF/ALP system and it is not clear whether the algorithm is still being used

elsewhere today.
5In studies where allelic frequency between population might differs, such as in case and

control studies, care must be taken when dividing the samples into separate runs.
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Figure 2.7: DNA Fragment ladder. Panel a shows an image of a trace data matrix.

The traces have been aligned based on their respective SSF. Panel b is the overlay plot

of the same trace data.

42



a)

95 100 105 110 115 120 125 130 135 140
size HbpL

0

250

500

750

1000

1250

1500

in
te

ns
ity

b)

95 100 105 110 115 120 125 130 135 140
size HbpL

0

1000

2000

3000

4000

in
te

ns
ity

Figure 2.8: A marker with ‘disconnected’ allelic distribution. The PCR products

of the marker D1S2797 (different set of individuals) were run under a slab gel elec-

trophoresis (ABI-377), panel a, and capillaries (ABI-3700), panel b. Peaks are absent

from the region around 105–115 bp in panel a (or 103–112 bp in panel b). When

the two data sets are binned separately, the size difference between the leftmost allele

(103 bp in panel a and 99.5 bp in panel b) and the main cluster of peaks might be

rounded in different directions.
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label incompatibility is currently still a serious problem [Weeks et al 2002]. We
think the main source of difficulty is binning inconsistency resulting from a
‘disconnected allele ladder’. Including all peaks, including the stutter peaks,
may improve the reliability of automatic binning procedure. If inconsistency
is inevitable due to a lack of information in the data, then the procedure for
merging genotypes from different data sets should use more flexible adjustments,
by allowing local shifts instead of a single constant. Local similarity of the allelic
frequency profiles might be used to optimize the alignment.

2.2 Formulation

Our proposed solutions to the sizing, binning and merging problems consist of
two main parts. The first procedure performs sizing and binning simultaneously
on the raw trace data, producing a matrix of aligned traces. This is done for each
marker in each run. The output is passed on to the allele caller (to be described
in the next two chapters). The second procedure combines the genotypes (the
result of allele calling) from different runs, based on local similarity of the allele
frequency profiles. This step is performed on the allele labels instead of the
whole trace because the main assumption is that there is similarity between allele
frequencies, which is not exactly the same with the combined trace patterns.
Furthermore, combining traces from multiple runs to be analyzed together by
the allele caller is not beneficial because each run might have its own systematic
effects. We describe the merging procedure here because the algorithm is very
similar to that for trace alignment.

Our aim is to estimate the mapping between migration time and fragment
length, through the size relative to SSF and the relative lengths ‘counted’ from
the observed fragment ladder. Let us define the domains more precisely:

1. s ∈ R denotes the time scale of the raw measurement. This corresponds
directly to physical time. The unit is arbitrary and usually it is the number
of sample points since the measurement is started (called scan numbers or
scan#). Although the signals are discrete, we treat them as if they were
continuous. The intensity values corresponding to fractional scan numbers
are interpolated.

2. u ∈ R denotes the scale relative to the SSF. This scale depends on the
curve-fitting method.

3. t ∈ R denotes the relative length of the fragments. Although the length
of a fragment is an integer, it is convenient to treat t as continuous. The
center of DNA fragment peaks in this scale are located at integer points.
This scale specifies the fragment ladder or the ‘binning scheme’.
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4. τ ∈ R denotes the true length, in the sense that alleles from different runs
are directly comparable under this scale. It does not have to correspond
to the absolute number of nucleotides in the PCR products, which is
genetically irrelevant.

Input

A trace is a real-valued, continuous function of any one of the scales above.
The range is limited to the interval of the marker in question. Each data set
is a collection of n traces. The ‘raw’ traces (the input signals) are the results
of preprocessing steps (lane-tracking and color-separation), denoted by xj(s),
where the index j = 1, . . . , n identifies the lanes, and s is the scan number as
described above. Although the raw data are discretely sampled (at the points
where s is an integer), the changes in intensity are smooth enough for the values
in between the measurement points to be interpolated, using a method to be
detailed later. The same applies to the other scales.

The SSF information is assumed to be available for each lane as a set of
pairs Sj = {(u1, s1), (u2, s2), . . . , (ui, si), . . .}. Each pair corresponds to an SSF
fragment, where ui is the known length6 and si is the scan number. Another
piece of information to be specified is the marker interval (t0, tk] covering the
range of all possible alleles (with some safety margins). k = tk−t0 is the interval
width in basepairs, so that at most there are k DNA fragments. The open left
boundary of the interval is for convenience when working with discrete data
(thus the number of data points correspond easily with the interval width). The
‘output resolution’, denoted by T , needs to be specified. This is the number of
data points per basepair in the resampled traces. Choosing T = 10 is sufficient
(no loss of relevant information) and convenient. In the raw data that we used,
the sampling rate varies. On average, it is around 11 points per bp for ABI-377.

It is not necessary to specify the repeat types, such as di- or trinucleotide
repeats. All traces are treated as if they had a fragment ladder with 1 bp pe-
riodicity. This allows the same setting to handle all markers with non-repeat
unit alleles as well as those with extensive plusA peaks. Stronger assumptions
about the periodicity can be optionally specified, although all results in this
project use 1-bp periodicity assumption. We would like to know how far this
can be pushed, because it is convenient to specify minimal marker-specific in-
formation and the periodicity assumption may depend on allelic distribution of
the population being studied.

6We use the symbol u instead of t because this is the known length of the SSF, which is a

different scale from the length of the microsatellite fragments, due to dye bias.
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Outline of the method

We want to find the mappings between the scales:

s↔ u↔ t↔ τ (2.1)

which are bijective (invertible), monotone increasing, continuous and smooth.
These properties are used to guide the estimation of the mapping.

The output of the method is a set of aligned traces y1(t), . . . , yj(t), for t ∈
(t0, tk], Each trace yj is a result the function composition:

yj(t) = xj {sj [uj(t)]} (2.2)

where:

• xj(s) is the raw trace data (with interpolation when necessary)

• sj(u) is based on the SSF points Sj interpolated according to a curve-
fitting method.

• uj(t) is estimated from the observed fragment ladder according to

uj(t) = t+ φ(t) + ψj(t) . (2.3)

φ(t) represents marker-specific systematic bias, which applies to all lanes,
and ψj(t) is “jitter”, or time variation specific to each lane.

φ(t) and ψj(t) need to be estimated from the data. A much simplified version
of the algorithm (for illustration) is as follow:

1. Assume φ(t) = 0 and ψj(t) = 0, and resample y(1)
j (t) = xj [s(t)].

Summarize all lanes, e.g. by computing y∗(t) = max
j
y
(1)
j (t).

Find φ as a curve that minimizes the difference between the summary y∗

and a periodic function, say w(t) = cos(2πt/T ):

min
φ(t)

∫ tk

t0

|y∗[t+ φ(t)]− w(t)|p dt . (2.4)

where p specifies the appropriate norm.

2. Assume ψj(t) = 0, and resample y(2)
j (t) = xj [s(t+ φ(t))].

Summarize all lanes, e.g. by computing y∗(t) = max
j
y
(2)
j (t).

For each lane j, find ψj(t) as a curve that minimizes the difference between
the summary y∗ and each trace y(2)

j .

min
ψj(t)

∫ tk

t0

|y(2)
j [t+ ψj(t)]− y∗(t)|p dt . (2.5)

where p specifies the appropriate norm.
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3. Resample y(3)
j (t) = x { s[t+ φ(t) + ψj(t)] }

The main idea of the approach is that two signals that are similar except for a
small time distortion can be aligned (equation 2.4 and 2.5). This is a problem
encountered in many fields [Ramsay and Silverman 1997, Sankoff and Kruskal
1983, Wang and Isenhour 1987, Rabiner and Juang 1993, Mott 1998] and can
be solved by methods such as dynamic programming (also known as dynamic
time warping or DTW). Usually both signals are observations, but here, in the
first alignment (equation 2.4) we compare an ideal fragment ladder (y∗), which
is made of periodic peaks at the expected locations (integer points of t), with
the ladder obtain by combining all traces, which is essentially the outline (or
“skyline projection”) of the overlaid plots such as figure 2.7b. The discrepancy
between the two is the systematic bias (or allelic drift). The second alignments
(equation 2.5) reduce the variation between lanes and put the center of all
peaks at integer points. Here each individual trace is aligned with the empirical
fragment ladder constructed from the traces that have been corrected for φ.

We do not attempt to treat equation 2.3, 2.4 or 2.5 as rigorous statistical
models. The method is somewhat ad hoc and the ultimate justification is com-
parison with binning made by human judgment. As the result of trial-and-error
improvements, the actual algorithm contains many ad hoc modifications and
constraints. These will be detailed in the next section. Some of the modifica-
tions are: 1) the use of enhanced traces (by frequency filtering and intensity
thresholding) results in stronger features for alignment and resistance to noise,
2) absolute difference (p = 1) for the alignment scores, 3) second-order loess
or locally weighted regression for the sizing curve, and 4) using the average of
a few largest intensities for constructing the summary ladder (y∗), to make it
more robust to noisy peaks.

Merging genotypes from different runs is based also on signal alignment.
Here the signals are the allelic frequency profiles from each run. One run is
arbitrarily chosen as the ‘reference’ and the others are aligned to this reference
run. Letting f(t) the allelic frequency profile of a run, and g(t) of another, we
want to find the set of local shifts ξ(t) that minimizes:

tk∑
t=t0

{f(t)− g[t+ ξ(t)]}2 (2.6)

Dynamic time warping alignment is also used. We use a summation sign instead
of an integral to highlight the discrete nature of the allele labels7. Different

7Dynamic programming alignment is always a discrete method. However, in the case of

trace alignment, interpolation and smoothing are applied to the alignment curve φ and ψj to

reflect the continuous nature of electrophoretic distortions.
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constraints from those for trace alignment need to be used to reflect the nature
of the distortions, which is binning inconsistency due to sparse fragment ladder.

2.3 Algorithm Descriptions

2.3.1 Trace resampling and interpolation

As indicated in the outline of the proposed method, we need to repeatedly
resample yj [sj(u)] for all j. This involves looking up the value of xj(s) and
sj(u) for arbitrary real values of u. The interpolation method has to keep the
relevant information intact, as well as be computationally efficient.

To ensure the fidelity of resampled signals, we can use the Shannon-Whittaker
sampling theorem as a guideline (Mallat [1998, section 3.1], Press et al [1992,
section 12.1]). Roughly, a signal can be represented by sampling at the interval
of ∆u, if it does not contain Fourier components with smaller periods than ∆u.
Choosing ∆u to be 1/T = 0.1 bp per data point should be more than sufficient
for our purpose. sj(u) is a very smooth function (see figure 2.2, page 31) relative
to ∆u. The corresponding ∆s is, on average8, about the same with the sampling
interval of the raw data from ABI-377 instrument (around 11 data points per bp
under the typical gel concentration, electrophoresis voltage and scanning rate
at 2400 per hour). In ABI-3700 instrument the sampling rate of the raw data is
about 16 data points per bp. The additional sampling resolution does not con-
tain more information other than background fluctuations. To avoid aliasing, a
smoothing filter is applied to the raw traces before resampling them. The fil-
ter cutoff is chosen such that Fourier components with periodicity smaller than
average ∆s are attenuated. For efficiency and flexibility, a recursive smoothing
filter is used (see Appendix A).

After smoothing the raw signal, the value of xj(s) for arbitrary (non integer)
s can be looked up using first-order Lagrange (linear) interpolation. Letting sa
and sb the nearest integer scan numbers of the raw data points (sa ≤ s ≤ sb),
the interpolated intensity corresponding to s is:

x(s) =
sb − s

sb − sa
x(sa) +

s− sa
sb − sa

x(sb). (2.7)

Because sb − sa = 1, this can be computed efficiently by

x(s) = x(sa) + (s− sa) [x(sb)− x(sa)] , (2.8)

where sa and s− sa can be obtained readily from the built-in machine instruc-
tion9 that returns the integral and fractional value of a floating point number.

8Because of the time warping effects, the resampling rate is slightly non uniform.
9Accessible, for example, by the fmod function in ANSI C standard library.
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In this way, the lookup operations can be done very efficiently. There is no need
to perform interval search as usually done in generic interpolation methods,
such as that in [Press et al 1992, section 3.1]. For the same reason, evaluation
of sj(u) is done by pre-computing the values just once for a range of values of
u, at ∆u = 1 bp, based on whichever curve estimation method is chosen to fit
the SSF points. This represents the curve sj(u) as a discrete signal with a very
good approximation. Subsequently, repeated lookup operations are done using
linear interpolation analogous to equation 2.8.

2.3.2 Sizing curve

We need to find the relationship between s and u for each lane, given the
observed SSF points Sj = {(u1, s1), (u2, s2), . . .}. Given a set of scan numbers
sj from different lanes associated with the same fragment t, the sizing method
must minimize the variance of the corresponding uj ’s. Although sizing bias is
inevitable due to physical factors, the sizing method should not add artificial
fluctuations to the bias curve. It is less difficult to design bias correction or
binning methods (which rely on the expected periodicity of the fragment ladder)
if the bias curve is as flat (close to a constant) as possible, or at least as linear
as possible, i.e. the fragment ladder is as evenly spaced as possible. Although
our method for bias correction does not assume the bias curve to be linear or
specified by other parametric forms, it has some smoothness constraints that
limits the flexibility of the estimated bias curve. Relaxing these constraints risks
making the estimate less reliable and more sensitive to noisy data.

We compared three different methods: linear interpolation (first-order La-
grange), the commonly used local Southern method, and second-order locally
weighted polynomial regression [Cleveland 1979, Hastie et al 2001], which, to
our knowledge, has never been applied to this problem. Other methods such
as cubic splines and (‘global’) polynomial regressions have been shown to have
larger variance than the local Southern, possibly because of its local nature.
Linear interpolation is the most ‘local’ method (depending only on two flank-
ing points). It would be interesting to compare the variance and bias of linear
interpolation to those of the local Southern method, which is more complicated
to compute10.

The details of the local Southern as implemented in ABI GeneScan are not
published. We found that it is possible to reproduce their output (up to 2 dec-
imal digits, which all that they produce) by following the procedure detailed in
the manual of an alternative fragment analysis software, Genographer AFLP11.
This is similar in principle to the one outlined in Elder and Southern [1987].

10Interestingly, linear interpolation is not available in ABI GeneScan.
11 http://hordeum.oscs.montana.edu/genographer/help/lsouthern.html
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One important ‘modification’ is that ABI GeneScan treats the scan number as if
it was mobility (which is what the original Southern’s formula expects as input).
Note that by definition, the mobility is the reciprocal of the scan number (mi-
gration time). In a sense, this is a mis-application of the local Southern method,
which was originally intended for fixed-time electrophoresis that measures mi-
gration distance, which is proportional to mobility. However, empirically this
does not cause grossly erroneous results. Further examination of the local South-
ern methods indicates that it is a generic interpolation method that does not
depend too much on the original physical model of DNA fragment migration
(the ABI GeneScan manual mentions that it is ‘closely related’ to cubic spline).

Both linear interpolation and the local Southern are ‘interpolative’ in the
sense that the curve has to pass through all SSF points. This makes them more
sensitive to sequence-specific SSF idiosyncrasies. On the other hand, methods
based on regression consider the migration time si of a given known length ui

to contain some errors. It is difficult, however, to specify a parametric form
for the expected migration time as a function of the length because changes in
running conditions might affect the curvature systematically, in unpredictable
ways. Nevertheless, we know that locally the curve should be smooth. It is
reasonable, therefore, to try a smoothing or ‘non-parametric regression’ method,
such as the locally-weighted polynomial regression (also known as loess curve).

Second-order polynomials are used to avoid the effect of flattened troughs
and valleys found in first-order loess [Hastie et al 2001, page 171]. Dropping the
subscript j for simplicity, we approximate the curve s(u) for a given lane by

s(u) ' β(0)
u + β(1)

u u+ β(2)
u u2 . (2.9)

Here β(r)
u are the regression coefficients obtained from minimizing

min
β

(r)
u

p∑
i=1

Kλ(u, ui)
[
si − β(0)

u − β(1)
u ui − β(2)

u u2
i

]2

(2.10)

where u1, . . . , up and s1, . . . , sp are the known lengths and scan numbers of the
p size-standard fragments. Kλ is the kernel than controls the locality of the
approximation. We use the Gaussian kernel:

Kλ(u, ui) = exp
{
− (u− ui)2

2λ2

}
. (2.11)

λ is chosen based on visual inspection on a wide range of observations (of ABI
GS500 SSF in various runs). The value of 50 seems to be good enough. Lower
values causes discontinuity in the curve (note that the spacing of SSF in ABI
GS500 is roughly 50 bp), while higher values causes the local features to be
missed. Values between 50 and 100 do not seem to produce significantly different
curves.
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The normal equation is used to solve the problem (using Cholesky decom-
position):

ATWTWAβ = ATWTWs (2.12)

where

A =


1 u1 u2

1

...
...

...
1 up u2

p

 , (2.13)

W = diag [Wλ(u− u1), . . . ,Wλ(u− up)], and s = (s1, . . . , sp)T.
We need to solve the least-squares equation for three coefficients for every

point u on every lane j. To save computation time, this is only done once for
each lane. The values of s(u) for 50 ≤ u ≤ 400 are computed, with ∆u = 1,
and the values in between are linearly interpolated (as mentioned in subsec-
tion 2.3.1, page 48). The values outside the range (or near the endpoints) might
be unreliable, but most microsatellite fragments are between 70 to 350 bp.

2.3.3 Signal enhancement

Although it is possible to use the original signal y(t) = x (s[u(t)]), we found that
pre-treating the signal to highlight certain features improved the performance of
the alignment. We need to highlight fluctuations which correspond to the DNA
fragment ladder and suppress faster changing noise peaks, as well as slower
changing ones, which might be “dye blobs” or other electrophoretic contami-
nants. There might also be occasional failures of the ABI GeneScan baselining
algorithm, especially in the presence of artificially negative peaks due to color
bleed.

We use a bandpass filter that lets frequency components from 0.025π to
0.125π (or periodicity of 4 bp to 0.8 bp) to go through, while attenuating the
frequencies outside the range (see figure 2.9a). This range was found through
trial and error. It is necessary to make the band a little wider than just around
the periodicity of 1 bp, because some peaks are not very sharp (especially in
the upper range of the electrophoresis where the peaks are more diffuse). Using
a narrow frequency band would attenuate those peaks.

A Butterworth recursive filter is used [Antoniou 1993] to allow efficient com-
putation. The transfer function is:

H(z) =
.06745535− .134911z2 + .06745535z4

1− 2.94453z + 3.38621z2 − 1.84429z3 + .412802z4
. (2.14)

Note that these coefficients are specific for the sampling rate of 10 points per
bp. For other sampling rates, the coefficients can be computed easily using the
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Figure 2.9: Signal enhancement before applying dynamic time warping. Panel a

shows the frequency response of the bandpass filter used to highlight features in the

trace data. Panel b shows an example result of applying the bandpass filtering and

thresholding procedure. The black trace is the original signal, the red one is the

bandpass-filtered signal, and the green one is the result of thresholding the filtered

signal.
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standard method for Butterworth filter design. The filtering is performed in
both directions (cascaded) to obtain zero-phase response, so that the locations
of the center of the peaks remain the same with those in the original signal.

After filtering, regions not containing any DNA fragment may have low
background noisy. This will cause spurious alignment when the two signals are
aligned according to the background fluctuations. To prevent this, these noisy
fluctuations are removed by zeroing the intensity if it falls below certain cutoff
(see figure 2.9b). The initial cutoff values were initially estimated from the dis-
tribution of the intensities (by fitting a mixture of two Gaussian densities for the
signal and the noise). For trace data preprocessed by ABI GeneScan, we found
that the cutoffs for various markers are consistently around the fluorescence
unit of 5 (this is essentially the level of the background noise of the instrument).
We use this fixed cutoff instead of estimating it from the data because it saves
computation. The cutoff value has to be re-calibrated for other instruments.

This signal enhancement procedure is essentially a data reduction (or feature
extraction) process, similar to the commonly used peak identification procedure
where a combination of smoothing filters and derivatives (which is in effect, a
bandpass filter) is used to choose candidate peak locations, followed by identi-
fying the local maxima as the peaks. The difference is that we do not proceed
to reduce each peak to a single ‘spike’ (a pair of location and intensity values).
In this way, the traces are still represented as time series vectors and the peaks
are still “fuzzy”. This is sufficient for our purpose (and in fact, robust to cases
where a peak is split into more than one maximum due to noise). Proper peak
deconvolution is non-trivial [Li and Speed 2000]. We need to know, or to esti-
mate, the peak locations, which is the problem that we are trying to solve using
this trace alignment approach. Note that this enhancement step is done only
to provide the appropriate input to the alignment algorithm. The final outputs
are still the aligned versions of the original traces.

2.3.4 Fragment ladder summary

We need to estimate a periodic density of the DNA fragment ladder in a marker,
based on a set of (enhanced) traces y1, . . . , yn. The simplest way is to use the
average across lanes at each time point:

ȳ(t) =
n∑
j=1

yj(t) (2.15)

The problem with this is that rare fragments (from rare alleles) might not appear
in the estimate, although we still need to align the peaks. On the other hand,
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using the maximum across lanes:

ymax(t) = max
∀j

yj(t) (2.16)

will ensure that the summarized intensity does not depend on the allele fre-
quency. However, this might be sensitive to high-intensity contaminants.

Our solution is to use the average of a few top intensity values. Let j1, j2, . . . , jn
be lane indices such that:

yj1(t) ≥ yj2(t) ≥ . . . ≥ yjn(t) (2.17)

The summary of the fragment ladder is:

y∗q (t) =
q∑
i=1

yji(t) . (2.18)

When q = 1 this gives the maximum, while q = n gives the mean. In practice,
q = 5 seems to be optimal. An example is shown in figure 2.10.

2.3.5 DTW for trace alignment

Our problem is to find the correspondence between the two time scales t and u,
by minimizing the difference between two signals f(t) and g(u) which are fairly
similar, except for the “time warps”. We set the signal f(t) as the reference
signal and fix the time scale t. The time scale u can be expressed as:

u(t) = t+ φ(t) . (2.19)

We call φ(t) the ‘alignment curve’, to be estimated by minimizing:

min
φ(t)

∫ tk

t0

|g(t+ φ[t])− f(t)|p dt (2.20)

where p specify the ‘norm’ of the difference. The appropriate value of p is to
be determined empirically. Roughly it should reflect the distribution of the
absolute difference between g(u) and f(t).

If a parametric form of φ(t) can be assumed, the problem above can be
solved using generic optimization techniques. For microsatellite traces, it is
hard to parametrically specify φ(t). We can only assume a certain degree of
smoothness, in addition to monotonicity of u(t). We therefore choose to use
dynamic programming alignment or dynamic time warping (DTW) to solve the
minimization problem. This approach is also computationally less expensive.
There is no need to repeatedly resample and interpolate g(t+φ[t]), which would
be required if iterative optimization is used to solve equation 2.20.

The basic idea of DTW is that the difference (or similarity) between g(u)
and f(t) are evaluated only at a finite number of points, usually an evenly
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Figure 2.10: Fragment ladder summary. Panel a shows the overlay plot of all the

enhanced traces of marker D17S944. Panel b shows the mean, where peaks are not

well-represented (for example, at 318 bp and 334 bp). Panel c show the maximum,

where the summary becomes noisy due to a few strong, out-of-alignment peaks. and

panel d is the average of the five highest intensity values, which is a good compromise.
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spaced grid in the plane spanned by u and t. φ(t) is thus found as a path
that connects some points on the grid, having an optimal sum of the pointwise
scores. Each possible path is made up of ‘moves’ or path segments, which are
directional and have to obey the monotonicity condition. The path segments
can be considered edges of a directed acyclic graph, and choosing the optimal
path can be decomposed into choosing the optimal subpath leading to every grid
point. This can be done using a recursion, and because the optimal subpath
leading to a point does not depend on the remaining subpath to be completed,
the computation can be done efficiently by caching the temporary results (the
accumulated score and the choice of moves) at each grid point.

DTW is not a single specific method, but a framework with many options
for specifying various parameters and constraints. These are systematically
presented in Rabiner and Juang [1993, section 4.7]. Below we describe the
design decisions for our problem.

Path region Usually the alignment grid covers all regularly sampled values
of u ∈ [u0, uk] and t ∈ [t0, tk]. This is unnecessary for our problem, because
the distortions that we want to correct are only slightly off the main diagonal
u(t) = t. We define the path region to be a band around the diagonal, bounded
by u(t) = t+φmax and u(t) = t−φmax. We also assume that the two traces are
padded by zeroes outside the interval of interest. In this way, the alignment grid
can be considered rectangular in the plane spanned by [−φmax, φmax] and [t0, tk]
(see figure 2.11). The diagonal trajectory u(t) = t becomes the constant φ(t) = 0
in this plane. We will use this φ-versus-t plane instead of the usual u-versus-t
because it is easier to visualize, as well as to implement, the computation. The
spacing of the grid is the same as the sampling rate (10 data points per bp). A
path may start at any point with t = t0 and ends at any point where t = tk.

Path segments The simplest path segments are made of three possible moves
which for every increment of ∆t, ∆φ may be −1, 0, or +1 data points. This
is, however, too flexible for our purpose. ‘Stiffer’ curve can be produced by
requiring that a minimum number of ∆φ = 0 moves are taken before a change
in φ(t) is allowed. Suppose three ‘flat’ moves are required, the total path is
constructed from the subpaths shown in figure 2.12.

Recurrence equation Let d(t, φ) be the pointwise score, and D(t, φ) the
accumulated score of a path. The minimization can be done recursively choosing
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Figure 2.12: Possible path segments if ∆φ = −1 or ∆φ = +1 are constrained such

that they can only happen after three consecutive occurrences of ∆φ = 0.
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one of the three options:

D(t, φ) = min


ω d(t, φ) +D(t−∆t, φ+ ∆φ)
d(t, φ) +D(t−∆t, φ)

ω d(t, φ) +D(t−∆t, φ−∆φ)

(2.21)

subject to the requirement that a change in φ (the top or the bottom choice)
can only be taken after certain number of the middle choice. ω, called the ‘slope
weight’ in Rabiner and Juang [1993], is a factor greater than one that can be
used to further penalize changes in φ, and make the alignment curve stiffer.

The recursion is computed ‘bottom-up’. The values of D(t, φ) is computed
from t = 0 to t = tk, processing every column of the alignment grid from left
to right. For each (t, φ) along the path, the value of D(t, φ) is stored, together
with the pointer to the previous node that minimizes equation 2.21. The end
point is chosen among the nodes in the rightmost column, selecting the one
with minimal D(t, φ). To complete the alignment path, backtracking is done by
following the pointers recursively, all the way back to the first column.

Alignment score As indicated by equation 2.20, we choose to minimize the p-
norm of the difference between f(t) and the warped signal g(t+φ[t]). Naturally,

d(t, φ) = |y(t)− g(t+ φ)|p . (2.22)

However, in an effort to increase the smoothness of the alignment curve (which
still fluctuates even after using the slope weighting ω and the consecutive ∆φ = 0
rule), we found that smoothing the score along the rows of the alignment grid
results in a curve that is less variable. Thus, we use

d(t, φ) =
∫ +∞

−∞
W (t− s)|y(s)− g(s+ φ)|p ds (2.23)

where W (t − s) is a kernel of a smoothing filter. A cascaded, bidirectional
exponential smoothing filter is used (see appendix A). The wider the kernel,
the smoother (and less adaptive) the resulting alignment curve. In the extreme
case, where the scores throughout the length of the rows are effectively averaged,
the alignment algorithm simply finds a constant lag.

Smoothing the scores does not require much more computation. The value
of |y(t) − g(t + φ[t])|p need to be computed only once for each node and then
stored in the alignment matrix. Smoothing is then performed for each row,
overwriting the memory. This can be done in linear time and ‘in-place’ using
a recursive smoothing filter. Afterward, the dynamic programming recursion
(accumulating the scores and backtracking) can be done without modification,
using the value of d(t, φ) stored in the matrix and then overwriting it by D(t, φ).
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Preprocessing the input The two signals have to have the same baseline,
which is zero. If some areas in the signal are blank (as encountered in mi-
crosatellite traces), the background noise should be removed, to avoid erratic
alignment driven by the noisy peaks. These requirements are satisfied by pre-
treating the signals using the enhancement procedure in subsection 2.3.3. It is
also important that the intensity scales of the two signals are similar. This can
be done by standardizing the intensity, e.g. by making ‖f‖2 = ‖g‖2 = 1.

Smoothing the alignment path The alignment path found by DTW is
‘jagged’, due to the rectangular grid for discretizing the path, while the real
sizing bias due to electrophoresis is smooth. The path can be smoothed using
a lowpass filter. Smoothing also ensures that u(t) is monotone increasing. Un-
smoothed path segments may contain parts where t and t+ ∆t are mapped to
the same value of u, i.e., at the segment with ∆φ = −1. If this path is used
to resample the trace, duplicate intensity values will be found adjacent to each
other, interrupting the smoothness of the trace.

Specific applications The DTW algorithm is used in two different parts
of the trace alignment method (see page 46): finding the systematic bias φ
(equation 2.4) and finding the ‘jitter’ of individual lanes ψj (equation 2.5). Both
are done using similar parameter settings. p = 1, or the absolute difference, is
used for the alignment score. The slope weight ω is set to 1.5. The minimum
number of horizontal moves (∆φ = 0) need to be taken is three. The lowpass
filter coefficient for smoothing the alignment score is 0.5, while the coefficient
for smoothing the alignment curve is 0.85.

The range of the band, [−φmax, φmax], is limited to ±0.4 bp for jitter correc-
tion, because we do not want to change the identity of the alleles. For estimating
φ, this band can be set to ±2 bp. It is not likely that the bias will be curved
by more than this range in a single marker.

In estimating φ, we are comparing the fragment ladder summary with an
ideal periodic signal. We use the ‘chopped cosine’ function:

w(t) =

{
cos(2π/T ) if cos(2π/T ) > 0
0 otherwise

(2.24)

Although a periodicity of 1 bp is assumed, this alignment still works fine on data
with 2-bp periodicity (such as the one in figure 2.10). For perfect dinucleotide
markers with no plusA peaks (like many markers in the commercial ABI linkage
mapping sets), the stronger assumption of 2-bp periodicity can be specified
easily by aligning against cos(π/T ). However, undesirable results might be
encountered when some odd alleles (or plusA peaks) are unexpectedly present.
Adjacent peaks differing by 1 bp will be stretched into 2 bp in the aligned traces.
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2.3.6 DTW for aligning allele frequency profiles

DTW is also used to merge genotypes (allele labels) from different sources. As
mentioned in section 2.1.4, a simple shift by a constant integer does not always
correct the labeling differences, because consistent binning across different runs
might be impossible if the allelic frequency distribution is ‘disconnected’. Nev-
ertheless, if the allelic frequency profiles are similar between different runs, local
shifts might be used to align the labels and thus, to merge the data. This is
illustrated in figure 2.13.

Automatic alignment can be done using the DTW algorithm similar to that
used for trace alignment. The parameterization of the algorithm is different
because the nature of the signals is different. The alignment path should not
be smoothed, because allele labels are discrete, and changes in the path are due
to discrete ‘gaps’, instead of continuous stretching and shrinking. These gaps
occur as the results of different binning decisions in separately analyzed data
sets, and they appear in the regions lacking allelic peaks. Thus, an additional
constraint is applied to the recurrence equation 2.21. A move with ∆φ 6= 0
cannot be chosen if it causes elimination of an allele label which has a non-zero
count in either profile. The other settings are:

• Consecutive horizontal moves should span at least 3 bp before a gap can
be introduced.

• No smoothing of the alignment score d(t, φ) needs to be done.

• For the norm, p = 2 (least squares) is better than p = 1, possibly because
the signal is made of allelic frequencies instead of fluorescence intensities
(which may have a few outlying high peaks better handled by p = 1).

• The slope weight, ω, is set to 1.5.

• The range of the alignment band is ±4 bp.

In addition to merging data from different sources, this DTW algorithm can
be used to match allele labels produced from the same trace data by different
allele calling systems (manual or automatic), in order to see genuine calling
discrepancies. This is the primary use of the DTW merging algorithm in this
project.

2.3.7 Implementation

Trace data and SSF information are extracted from ABI sample files created by
ABI GeneScan, which is also used to perform lane-tracking, color-separation and
SSF identification. Reading the binary file format (also known as the ‘ABIF’
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Figure 2.13: Alignment of allele labels based on the similarity between allele fre-

quency profiles. The alleles are from the data set in figure 2.8. (Note that the trace

intensity may vary between alleles and lanes, and thus does not correspond to the al-

lelic frequency in a simple way.) Most allele labels (those between 111 bp and 131 bp)

differ by 4 bp, while one allele is binned as 102 bp in the top profile and 99 bp in the

bottom (3 bp difference).
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format) is done using a custom perl script exabif.pl, based on the description
of the sequencing data format in Tibbetts [1995]. The genotyping data format
is similar, except for extra data tags containing peaks and SSF information.

Sizing using a second order loess curve is done by a stand-alone program
written in C called loessf.c. It takes the SSF pairs and outputs a piecewise
linear approximation of the curve, evenly spaced at 1 bp. The curves from all
lanes are saved as a matrix. Programs for other sizing methods (local Southern
and linear interpolation) were also written.

The main trace alignment method is implemented in C, in a program called
stral (for ‘short tandem repeat trace alignment’). It performs the steps on
page 46 and creates an aligned data matrix for each marker. On a Pentium-
III/450MHz running Linux, processing 96 lanes from a run, containing 17 mark-
ers (panel 1 of ABI Linkage Mapping Set v2) takes only 30 seconds (17 seconds
on 700 MHz system). The memory footprint is between 1Mb to 3Mb (depending
on the size of the marker intervals). It is easy to parallelize the computation
because each marker is handled by a separate process. On a four-processor ma-
chine (with 700 MHz CPU speed), the markers were divided into four different
sets (each processed serially). The wall-clock time to align all 17 markers was
only about 5–6 seconds.

For merger allele calls, a separate program dtwmerge.c was written. It takes
as input two genotype tables (from two data sources) and produces the mapping
from allele labels in one set to the labels in the other. The input format is the
same as that of ABI Genotyper tabular output.

2.4 Results and Discussion

The ultimate way to assess the performance of the trace alignment method is
by testing the whole allele calling system and examining if some of the errors
are caused by the trace alignment step. This will be presented in chapter 4.
Here, we will only present some illustrations of the algorithm’s behavior.

2.4.1 Comparison of some sizing methods

The alignment steps (equation 2.4 and 2.5, as well as allele frequency profile
alignment) compensate for sizing bias and variations. Thus, the choice of the
sizing method is not that critical, although extremely curved sizing bias and
dispersed sizes (for a given fragment) will cause alignment difficulties and bin-
ning errors. As mentioned previously, we tested three different methods: local
Southern, linear interpolation (lint1) and second-order loess (loess2). The local
Southern method is the ‘gold standard’, which has been shown to have small
variance [Ghosh et al 1997].
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To assess the variance and bias of a sizing method, we use a plot similar to
that in figure 2.6c. The allelic peaks (resulting from manual allele calling) are
used. These calls have allele labels (based on manual binning), as well as the
associated electropherogram locations of the peaks. The corresponding sizes are
computed using the sizing method, and the values of size minus length for each
allele are shown in figure 2.14. The standard deviations of size-minus-length for
each bin and for all alleles pooled together are shown in table 2.1.

These results indicate that all methods have similar variance, but the bias
curves are different. Note that the length in figure 2.14 is only relative, up to an
unknown integer constant. Therefore, closeness to zero does not make a better
method. It is desirable, however, to make the bias as close to a constant as
possible. loess2 tends to give flatter curves, which means that the spacing of
the fragment ladder is more uniform and closer to the expected periodicity. For
some markers, such as D18S64 in figure 2.14, the bias curve is bent regardless
of the sizing methods. This is possibly due to the inherent physical properties
of the fragments.

The local Southern method is not significantly different from linear interpo-
lation, although the latter is much easier to compute. Both are susceptible to
the migration anomaly of the 150 bp fragment in the ABI GS500 SSF set (see
figure 2.2, page 31). All marker intervals that cover 150 bp alleles exhibit the
same artificial curving as that seen in D3S3681 in figure 2.14 (data not shown,
but the large pooled standard deviations of those markers, shown in table 2.1,
are due to this effect). A binning or alignment algorithm that attempts to cor-
rect this curve might need to be extra flexible (and sacrifice reliability in the
presence of noise).

We concluded that loess2 is the method of choice. The sensitivity of the local
Southern method to SSF anomalies is important to note because the method is
widely used. In some cases, the phenomena of ‘allelic drift’ [Idury and Cardon
1997, Haberl and Tautz 1999] might be caused by the local Southern method.

2.4.2 Examples of trace alignment results

A set of traces from the marker D18S64 (from panel 24 of ABI LMS v2) is chosen
to illustrate various aspects of the alignment method. This marker is somewhat
atypical. The allele range is up to 340 bp, where electrophoresis under the
typical conditions starts to lose precision. It has large sizing variability and a
bent bias curve (see the bottom panel of figure 2.14), and can therefore illustrate
more clearly the correction of warps and jitter by our proposed method.

The alignment algorithm resamples the traces three times (see page 46).
Figure 2.15 shows the overlay plots from the various stages. In the first re-
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Figure 2.14: Sizing bias and variance for various sizing methods. From left to right,

the red, green, and blue box plots correspond to local Southern, lint1 and loess2 sizing

methods, respectively.
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Table 2.1: Comparison of the sizing variation of three different sizing methods: local

Southern, first order Lagrange interpolation (lint1), and second order loess (loess2).

For each method, the standard deviation is computed for binned and pooled data.

Numbers in boldface show large differences in the deviation between pooled and binned

data when local southern or lint1 is used, but not when loess2 is used.

standard deviations of (size − length)
marker range local southern lint1 loess2

(bp) binned pooled binned pooled binned pooled

D17S928 70 115 0.09 0.10 0.09 0.11 0.09 0.10
D18S63 75 120 0.10 0.14 0.10 0.12 0.10 0.11
D4S392 79 119 0.05 0.10 0.05 0.11 0.06 0.06
D3S1271 83 113 0.05 0.05 0.05 0.07 0.05 0.05
D3S1614 95 136 0.06 0.08 0.05 0.08 0.06 0.06
D3S3681 119 175 0.04 0.22 0.04 0.20 0.04 0.05

D18S474 120 155 0.07 0.28 0.07 0.28 0.07 0.07

D18S452 125 155 0.07 0.28 0.07 0.27 0.06 0.07

D3S1311 132 165 0.05 0.23 0.05 0.23 0.05 0.06

D4S1534 140 177 0.04 0.32 0.04 0.27 0.04 0.05

D18S59 150 180 0.08 0.26 0.08 0.22 0.08 0.10

D18S53 155 190 0.09 0.14 0.09 0.13 0.09 0.11
D17S785 165 200 0.08 0.10 0.08 0.10 0.08 0.10
D3S1565 165 203 0.05 0.06 0.05 0.06 0.05 0.08
D3S1263 185 225 0.04 0.05 0.04 0.09 0.04 0.12
D17S921 190 220 0.06 0.06 0.06 0.07 0.06 0.08
D18S1161 215 250 0.07 0.09 0.07 0.09 0.07 0.11
D17S784 220 250 0.08 0.09 0.08 0.09 0.08 0.10
D4S414 230 258 0.07 0.08 0.06 0.08 0.06 0.09
D3S1285 233 261 0.07 0.07 0.07 0.08 0.07 0.07
D17S938 235 265 0.08 0.12 0.08 0.11 0.08 0.11
D4S406 241 277 0.06 0.15 0.06 0.14 0.06 0.11
D18S68 265 300 0.09 0.12 0.09 0.12 0.09 0.12
D4S1597 273 309 0.08 0.31 0.08 0.31 0.08 0.30
D4S405 279 317 0.06 0.21 0.06 0.20 0.06 0.20
D4S1575 287 315 0.09 0.09 0.09 0.09 0.09 0.09
D18S464 300 325 0.20 0.23 0.21 0.23 0.20 0.23
D18S64 305 350 0.18 0.39 0.18 0.38 0.18 0.39
D17S944 310 345 0.22 0.29 0.22 0.28 0.22 0.28
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sampling, it assumes that u(t) = t (no bias). The fragment ladder summary
constructed from these ‘temporary’ traces is then aligned against the periodic
‘chopped cosine’ function (which has the same phase with the gridlines in fig-
ure 2.15). The alignment curve, φ(t), is used in the next round of resampling,
assuming u(t) = t+ φ(t). The effect correction is not easily seen in figure 2.15b
because of the variability of the peak locations (we will present this more clearly
below). Although still dispersed, the peaks are now centered around integer lo-
cations (the gridlines). The deviations from these integer locations are corrected
by aligning each trace individually against the fragment ladder summary newly
constructed from y

(2)
j . The reduction of variability in peak locations can be seen

in figure 2.15c. Note that there is one peak at 324 bp that falls in between two
densely populated bins. This peak might actually belong to either one of the
flanking bins, but deviates too far making it impossible to decide which way to
bin. The second alignment step is constrained such that −0.4 ≤ ψj(t) ≤ 0.4, so
that ‘stray’ peaks will stay where they are, to be identified visually or by the
downstream allele calling method.

The DTW algorithm is illustrated in figure 2.16. We can consider the align-
ment grid as a surface where the alignment scores specify the elevation of the
surface. The peaks of the reference trace form vertical walls in the surface (the
periodic green columns in figure 2.16a). The peaks of the other trace form an-
gled walls. The places where the walls intersect are narrow passes (because the
peaks cancel). The optimal alignment curve is the path going across the matrix
from left to right, avoiding climbing the walls by “sneaking” through the passes.

The fragment ladder summary (figure 2.16b) shows more clearly the warps
in the SSF-based scale, and the correction made by φ(t). The final alignment
curves, φ(t)+ψj(t), are shown in figure 2.16c. The variation of each lane can be
seen around the main trend. Another way to visualize the alignment curves, and
their relationship with the patterns of peaks in the data, is shown in figure 2.17.

2.5 Summary

We have developed and implemented an efficient algorithm for aligning mi-
crosatellite traces. The algorithm produces a corrected trace data matrix suit-
able for the subsequent analysis. More rigorous assessment of the performance
will be presented later, in conjunction with testing the allele calling algorithm.
The algorithm illustrates the power of dynamic programming approach for solv-
ing problems related to time warping. We have also discovered that 2nd-order
loess is a better sizing method than the widely used local Southern.
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Figure 2.15: Overlay plots of several traces in the same marker throughout the three

stages of alignment, y
(1)
j , y

(2)
j and y

(3)
j , are shown in panel a, b and c, respectively.
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Figure 2.16: An illustration of DTW matrix and alignment curves. Panel a shows the

dynamic programming matrix for minimizing equation 2.4 (see page 46). The rainbow

color coding corresponds to the alignment score d(t, φ) = |y(t+φ)−w(t)| (blue is low

and red is high). The white curve is the smoothed optimal path φ(t). Panel b shows

the fragment ladder summary before and after alignment (red and green, respectively).

Panel c is the alignment curves, φ(t) + ψj(t), resulting from minimizing equation 2.5.

The color coding corresponds to ‖ψj(t)‖2 (purple is low and yellow is high).
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Figure 2.17: Panel a shows an image representation of our example trace data. The

dark pixels correspond to high intensity. The horizontal scale is based on SSF only

(y(1)). The red gridlines are φ(t)+ψj(t) for t = 306, 308, 310, . . . drawn across the lanes.

We can see that gridlines follow the trend of the fragments. Panel b shows the same

data after the third resampling. The red gridlines correspond to t = 306, 308, 310, . . ..

Straightening the gridlines (by incorporating φ(t) and ψj(t) into the horizontal scale)

aligns the fragments.
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Chapter 3

Allelic Pattern Estimation

3.1 Overview

The trace alignment procedure presented in the previous chapter removes elec-
trophoretic ‘time warps’, which is just one of the measurement effects in mi-
crosatellite genotyping (figure 3.1). The resulting aligned traces (figure 3.1e)
can be considered a multivariate data matrix, where each column (a trace posi-
tion) can be compared directly across different lanes. The problem now is how
to remove the remaining effects.

As reviewed in chapter 1, each allele has a characteristic pattern which is
reproducible within an electrophoresis run. In homozygotes, the pattern of the
whole trace is the same with the prototypical allelic pattern. In heterozygotes,
the trace pattern is the linear superposition of the two allelic patterns [Perlin
et al 1995, Stoughton et al 1997]. The combined effect of plusA, slippage and
diffusion (the transformation from figure 3.1b to figure 3.1e) can be approxi-
mated by a linear model, where the characteristic patterns of the alleles are the
basis vectors and the unseen allelic quantities are the coefficients to be found
(figure 3.2). The knowledge that at most two of the coefficients can have non-
zero values, and that none of them may be negative, is used to constrain the
approximation. The best pair of alleles that minimizes the least-squares dis-
tance between the observed and predicted pattern is searched for using a model
selection procedure.

In a previously proposed method [Perlin et al 1995], the allelic patterns have
to be obtained from calibration data sets where the genotypes are known. A
pattern library needs to be painstakingly created for each marker and changes
in measurement conditions are likely to require re-calibration. Instead of build-
ing a library for each marker, we use a parametric model specifying how the
patterns are generated during PCR amplification and electrophoresis. The un-
known genotypes and the model parameters are simultaneously estimated, by
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ideal signal a)

↓ unequal amplification ratio

b)

↓ plusA untemplated addition

c)

↓ polymerase slippage

d)

↓ electrophoretic diffusion

e) 0 50 100 150 200 250

↓ electrophoretic “warp” & noise

observed signal f) 0 50 100 150 200 250

Figure 3.1: PCR and electrophoresis in microsatellite genotyping as a sequence
of transformations. The trace alignment procedure (chapter 2) removes the
“warp” effect.
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a) b)

Figure 3.2: Explaining a trace data as a linear combination of two allelic patterns.

Panel a is the set of patterns for possible alleles in a marker. Panel b is an example of

how an observed trace (black line) can be approximated by the linear combination (blue

curves) of two patterns (red and greed curves) that correspond to the true alleles. The

regression coefficients (the two colored bars) are the estimates of the relative quantities

of the allelic DNA fragments.
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optimizing the fit of the reconstructed patterns to the data.
The main challenge in developing the model is how to make it adaptable

for the wide range of possible patterns that might be encountered (for example,
figure 1.5, page 11), while keeping the number of model parameters as small as
possible to allow reliable estimation directly from the data. Our approach is to
linearly decompose the patterns according to the underlying physical processes
(as shown in figure 3.1). The linear operator at each transformation step is a
simple ‘convolution’ 1, which can be parameterized by the extent of the local
spreading of the DNA fragments. The computation of the convolutions can be
done very efficiently, in linear time, using recursive filters. Finding the best-fit
set of patterns can be seen as optimizing the filter coefficients.

Being able to estimate the allelic patterns and to reduce the trace data
to pairs of allelic coefficients does not give the final answers. In weak signals
(or traces contaminated by strong, spurious peaks such as those from non-
specifically amplified fragments and dye crosstalks), two alleles are always cho-
sen by the linear model to explain the observed pattern as much as possible,
although the observed and reconstructed shape may be quite dissimilar. A pro-
cedure to detect these instances needs to be devised. Additionally, there is a
problem with deciding whether to use only one or two allelic patterns to explain
a homozygote or a heterozygote observation.

Due to background noise, a homozygous trace is always explained as a linear
combination of two basis vectors in order to minimize the least-squares criteria,
although one of the coefficients does not correspond to a true allele (and is of-
ten very small). Throwing away this ‘false’ allele cannot be done using a simple
threshold applied uniformly to all genotypes, because the false coefficient in a
homozygote might be larger than the true coefficient in some heterozygotes (see
figure 3.3). Human analysts resolve this problem by relying on some regularity
about the amplification ratio. In general, each pair of allele has its own specific
ratio (give and take experimental noise). Typically, the larger the length differ-
ence between the two alleles, the larger the difference between their intensities,
with the shorter allele having the stronger signal2.

Knowing the typical ratio for a given pair of alleles will certainly help identi-
fying false heterozygotes. The further the ratio of the coefficients deviates from
the expected ratio, the more likely it is that the observation is a homozygote.
After observing many markers, we found a simple model that relates the length
difference and the allelic ratio. The model has a marker-specific parameter that
can be estimated from the data.

1Not in the strict sense, because some effects might be time-varying.
2There are rare exceptions to this rule where in certain pairs, the longer allele is more

strongly amplified in a reproducible way.
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5 18 42 22

Figure 3.3: Problems with using the best two patterns in linear approximation as

the genotype. Panel 5 and 18 should be called homozygotes, while panel 42 is a

heterozygote and panel 22 should be rejected as a failed measurement. Note that the

proportion of the true second allele in panel 42 is smaller than the false second allele

in panel 18, complicating the rule for throwing away false heterozygotes.

Combining the fitness of the allelic pattern model and the deviation from
the expected heterozygote ratio to call the genotypes turned out to be quite
a complicated problem. The two metrics have to be weighted in a way that
maximizes the calling performance (the trade-off between error and hit rate).
The calling procedure, which also incorporates other quality measures to detect
failures, will be described in the next chapter. Here, we simply describe the
models of PCR and electrophoresis effects, and how to fit them. The main
objective of modeling these effects is to extract features (distance metrics) that
are marker-independent so that the subsequent allele calling procedure can deal
with different markers in the same manner.

3.2 Methods

3.2.1 Formulation

We will use the index a, b ∈ {1, . . . , k} as allele labels. A genotype is a pair
(a, b). By convention, a ≤ b. There are 1

2k(k + 1) possible distinct genotypes.
We consider all allelic lengths t1, . . . , tk to be possible, although the actual
allelic distribution might be more restricted (for example, in most dinucleotide
repeats, all alleles are at either odd- or even-numbered lengths). In this way,
the difference between allele indices is consistent with their relative difference
in length (that is, b− a = tb − ta).

The input data is an aligned data matrix Y =
[
y1 · · · yn

]
. Here yj ∈ Rm

is the trace data of lane j, in the length interval (t0, tk]. The use of the open
lower bound of the interval, which exclude t0 as a possible allele, is to simplify
vector length arithmetics. Typically the dimension of the trace vector, m, is
larger than k. If T is the number of data points per bp, then the dimension of
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the trace vector is simply m = kT , with the first trace data point at the length
position t0 + 1/T . In practice the interval boundary is chosen to avoid alleles
few basepair from the edges. The alignment algorithm in the previous chapter
produces traces with T = 10, by default.

We will denote the coefficients of allele a and b (the spikes in figure 3.1b)
by α and β, respectively. These corresponds to the quantity of DNA fragments
from each allele. Each trace j can be approximated by:

yj ≈ αjµaj
+ βjµbj

, αj ≥ 0, βj ≥ 0 , (3.1)

where µ1, . . . ,µk are the set of all possible allelic patterns (µa ∈ Rm). Each
pattern is non-negative, and to ensure that α and β reflect the quantities of
the allelic DNA fragments, we require that the area under the curve of any µa

equals one. That is,
∑m
t=1 µ

t
a = 1, where µta the intensity of pattern a at the

trace position t.
The patterns are assumed to be constant across different lanes in a given

marker data from the same run (that is, there is no lane-specific effect). In
general, the allelic patterns are time-dependent. That is, µa is not a time-
shifted version of µb. However, the patterns are rather similar and differ only
in the extent of the stutter peaks. We use a parametric model to generate
µ1, . . . ,µk. The highly regular shape of the allelic pattern allows a handful of
parameters (seven in our model, detailed below) to specify the characteristic
shapes of alleles in a marker.

Let θ be the vector of the model’s parameters, and µθa the pattern of allele a
under a model parameters θ. Simultaneous estimation of the model param-
eters, the genotypes and the allelic proportions are done by the least-squares
minimization:

RSS = min
θ

n∑
j=1

min
aj ,bj ,αj ,βj

∥∥yj−αjµθaj
−βjµθbj

∥∥2

2
αj ≥ 0, βj ≥ 0 . (3.2)

We have two optimization problems. The inner optimization, for each lane j,
is a linear least-squares minimization with a non-negativity constraint, and a
restriction that at most only two of k possible basis vectors µθk have positive
coefficients. We will call this ‘genotypic least-squares approximation’. The outer
optimization, over the model parameter θ, is a generic non-linear minimization
problem, with constraints on the parameters θ.

3.2.2 Genotypic least-squares approximation

Here, we would like to find the best genotype, and the coefficients of of the
alleles, given a trace and a set of allelic patterns determined by the current
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value of θ. For clarity, we drop the trace subscript j and the superscript θ. The
minimization to solve is:

min
a,b,α,β

∥∥y − αµa − βµb
∥∥2

2
α ≥ 0, β ≥ 0 . (3.3)

The simplest way is to enumerate all possible pairs (a, b). For each one of them,
α and β can be obtained using the Cramer’s rule:

α =

∣∣∣∣∣µT
ay µT

aµb

µT
b y µT

bµb

∣∣∣∣∣∣∣∣∣∣µT
aµa µT

aµb

µT
aµb µT

bµb

∣∣∣∣∣
β =

∣∣∣∣∣µT
aµa µT

ay

µT
aµb µT

b y

∣∣∣∣∣∣∣∣∣∣µT
aµa µT

aµb

µT
aµb µT

bµb

∣∣∣∣∣
(3.4)

The enumeration of all possible genotypes is a potential computation bottle-
neck, especially since many dot product calculations need to be done. To save
time, the values of the determinants can be cached for a given model param-
eter, as well as all possible dot products µT

aµb. Also, for each j, µT
ayj needs

to be computed only once. However, it still takes quadratic time to go over all
possible pairs. To speed up the finding of the best pair, the following heuristic
is used:

1. Find a∗, by iterating over all possible k indices:

a∗ = arg min
a,α

∥∥y − αµa
∥∥2

2
(3.5)

or equivalently,

a∗ = arg max
a

µT
ay (3.6)

2. Fixing a∗, find the best b∗ 6= a∗ by iterating over all possible alleles,
minimizing equation 3.3.

3. The pair (a∗, b∗) obtained by step 1 and 2 is not necessarily the best. This
may happen when the distance b−a is small, resulting in significant overlap
of the two allelic patterns. The first allele chosen, a∗, might be neither
of the true alleles, if the pattern µa∗ can explain the data better (that
is, when the length of a∗ is between the lengths of the two true alleles).
However, the true alleles must be located in the vicinity of (a∗, b∗), based
on the fact that the allelic patterns have non-zero intensity values localized
around the main allele peak. To ‘escape’ from this suboptimal solution,
whenever the distance b − a is too small, say less than 5 bp, exhaustive
search of possible pairs of a, b ∈ [a∗ − d, b∗ + d] is performed, where d is a
small value (in practice, d = 3 is sufficient).
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This procedure speeds up the search by doing exhaustive enumeration on a few
alleles, and only when the two allelic patterns in the data are not well separated.
There is no prove yet that this heuristic is optimal, but it is satisfactory for the
purpose of estimating the model parameters. Exhaustive enumeration of all
possible pairs will be done later when the ultimate allele calling is performed.
The main focus here is optimization of θ, and it is assumed that a few wrong
genotypes, in a typical data set of 96 traces, do not have significant effect on
the estimate of θ.

Because of the background noise, it is usually possible to find the second
allele, even if the true genotype is homozygous. We have mentioned before that
throwing away the small allele is not a trivial problem, but at least we can do
so safely for very small second allele, to accelerate the search further. A pair is
required to satisfy 0.1 ≤ α

α+ β
≤ 0.9. Additionally, most markers do not have

genotypes with alleles differing by 1 bp, and therefore we require that |a−b| > 1.
This constraint can be relaxed for a few markers that have many heterozygotes
differing by 1 bp. These additional two rules are inserted in the loops of step 2
and step 3 in the algorithm above.

If the basis vectors µ1, . . .µk are close to the true allelic pattern, e.g. after
successful convergence of equation 3.2 to the true parameters θ, and the noise
level is very low, the best pairs (aj , bj) for each trace may serve as the estimate of
the true genotype. Thus, this algorithm essentially performs allele calling, and
will be referred to as GLSA caller (for ‘genotypic least-squares approximation’).
The least-squares distance between the observed and the reconstructed pattern
is a good candidate for a quality indicator.

Although useful for ranking the genotypes associated with a trace, the least-
squares distance cannot be used directly for rejecting or accepting the observa-
tions. The least-squares distance of a blank trace (which are mostly the back-
ground noise) is essentially the same as that of a good observation, which has
the same level of background noise superimposed on the ‘true’ allelic pattern.
We found that the following ‘standardized’ distance:

z2
a,b,j =

min
α,β≥0

‖yj − αµa − βµb‖2

‖yj‖2
(3.7)

is more useful and can be used to rank lanes in the same marker, according to
the signal quality (see figure 3.4). The values of z2 is always between 0 and 1,
and can be considered the ratio of the noise to the signal.
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t01/3700/D1S206

z2 = 0.0681 z2 = 0.103 z2 = 0.226 z2 = 0.677

z2 = 0.0663 z2 = 0.101 z2 = 0.193 z2 = 0.629

z2 = 0.064 z2 = 0.0917 z2 = 0.175 z2 = 0.542

z2 = 0.0635 z2 = 0.088 z2 = 0.154 z2 = 0.487

z2 = 0.0601 z2 = 0.0865 z2 = 0.149 z2 = 0.449

z2 = 0.0596 z2 = 0.0862 z2 = 0.133 z2 = 0.426

z2 = 0.0546 z2 = 0.0843 z2 = 0.12 z2 = 0.36

z2 = 0.0534 z2 = 0.0791 z2 = 0.119 z2 = 0.295

z2 = 0.0502 z2 = 0.0758 z2 = 0.116 z2 = 0.288

z2 = 0.0435 z2 = 0.0745 z2 = 0.115 z2 = 0.267

z2 = 0.0427 z2 = 0.0691 z2 = 0.113 z2 = 0.236

Figure 3.4: An example of a data set with varying quality between lanes. The black

lines are the trace data, while the red lines are the reconstructed pattern of the best

genotype (according to the z2 value or the least-squares distance). Across lanes, the

z2 value increases as the signal becomes more noisy.
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3.2.3 Allelic pattern model

Each of the plusA, slippage and diffusion effects is modeled as a linear operator.
The allelic pattern µθa is the result of concatenating the operators:

µθa = (DSA)θ δa (3.8)

where δa ∈ Rk is an indicator vector, whose components are zero except the
a-th which equals one. The operators D, S and A correspond to diffusion,
slippage and plusA effects, respectively. The transformation maps a pattern in
the “basepair space” (Rk) to the “electrophoresis pattern space” (Rm).

The effects broaden the signal locally, and thus the column vectors of the
matrices D, S, and A contain “impulse responses”, or kernels, whose posi-
tive values are concentrated along the diagonal. When it can be assumed, it
is convenient to model the linear operators as ‘proper’ convolutions (time in-
variant), because the number of parameters is smaller in addition to potentially
faster computation. While the slippage effect has to be modeled by time-varying
shapes, both the plusA and diffusion can be approximated by convolutions. Al-
though this is not strictly true for electrophoretic diffusion (the peaks are more
blurred for long fragments due to the more time spent inside the electrophoresis
media), the change is negligible within the narrow marker interval.

There are many ways to specify the spread functions of D and S (A is quite
trivial). Computational efficiency is an important consideration, because con-
struction of the allelic patterns and dot product operations need to be performed
repeatedly during the parameter optimization. The fastest way to compute a
convolution is using recursive filters (see appendix A), provided that the impulse
response can be described by a complex rational function in the Fourier domain.

One such filter is the exponential smoothing filter. Let y be the output of
the filter and x the input. The filtering can be performed in either forward
direction (causal) or backward (anticausal), by computing the recurrence:

yt = (Fx)t = a xt + (1− a)yt−1 causal
yt = (Gx)t = a xt + (1− a)yt+1 anticausal

(3.9)

The operators F and G can be expressed in matrix forms (let b = 1− a):

F =



a 0 0 · · · 0
ab a 0 0
ab2 ab a 0
...

. . .
...

abm−1 abm−2 abm−3 · · · a


(3.10)
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x

Fx

Gx

Figure 3.5: Exponential smoothing filter. Fx is the result ‘forward’ filtering of x,

while Gx is the result of ‘backward’ filtering.

G =



a · · · abm−3 abm−2 abm−1

...
. . .

...
0 a ab ab2

0 0 a ab

0 · · · 0 0 a


(3.11)

We can see that the column vectors of F andG is the probability density function
of a geometric distribution. Graphically, the results of filtering a pattern evenly
spaced spikes are shown in figure 3.5. Instead of using the filter coefficient a
which is rather non-intuitive, we parameterize the shape by the variance of a
geometric distribution:

σ2 =
1− a

a2
, (3.12)

where σ corresponds to the extent (or scale) of the spread. The filter coefficient
is the positive root of the quadratic equation above:

a =
−1 +

√
1 + 4σ2

2σ2
(3.13)

F and G can be cascaded to obtain impulse responses with desired spread,
symmetry and sharpness. For example, the impulse responses of (FG)p, is
symmetric and progressively approaching Gaussian as p increases. Asymmetry
is achieved by using different numbers of F ’s and G’s, i.e. F pGq where p 6= q.
The impulse response variance of the whole cascaded operators is the same with
the sum of the variance of each operator (since each one is a convolution).
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To model the time-dependent effect of polymerase slippage, we use an ex-
tension to the exponential smoothing filter:

yt = (F̃ x)t = at xt + (1− at)yt−1 causal
yt = (G̃x)t = at xt + (1− at)yt+1 anticausal

(3.14)

where at is the filter coefficient at time t. The time-varying filters can also be
expressed in matrix form:

F̃ =



a1 0 0 · · · 0
a1b2 a2 0
a1b2b3 a2b3 a3

...
. . .

a1b2 . . . bm · · · am


(3.15)

G̃ =



a1 · · · am−1bm−2 . . . b1 ambm−1 . . . b1
. . .

...
am−2 am−1bm−2 ambm−1bm−2

0 am−1 ambm−1

0 · · · 0 0 am


(3.16)

where bt = 1−at. The parameterization of at depends on the problem. For our
particular case, it will be detailed below.

Details of the operators

PlusA effect This effect is trivial to model because it simply splits a fragment
into two peaks in certain proportions. Transformation by A can be applied by
computing:

yt = θ1xt−1 + (1− θ1)xt

which is equivalent to multiplication by a bidiagonal matrix with (1− θ1) along
the diagonal and θ1 at the superdiagonal. Both the input and output signals
are vectors in Rk, where each data point coincides with a fragment length in
basepairs.

Polymerase slippage Because the extent of the spread increases with the
length of the allele, this operator is time-dependent (equation 3.14). Both in-
sertion and deletion slippages occur, so the spreading needs to be applied in
both directions, with the left tail significantly more extensive than the right
one (which is often missing). Additionally, the left tail is more rounded than a
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geometric impulse response, therefore more than one anticausal filter needs to
be applied.

We assume that the underlying physical process, insertion and deletion slip-
page, are binomial events and the net result is a convolution of them. Although
it is possible to model these events precisely (by considering the number of re-
peats and PCR cycles), it is sufficient to approximate the resulting patterns
using a few time-dependent smoothing filters. The longer the allele, the higher
the chance of slippage because of the larger number of repeats. Therefore, the
impulse response variance should change linearly with the length, because the
variance of a convolution is the sum of the variance of each kernel. Therefore,
dσ2/dt is a constant.

The input and output vectors are in the k-dimensional space, where each
data point corresponds to a fragment length. However, each slippage event
changes the length of the fragment by a multiple of the repeat-unit length (for
example, two for dinucleotide repeats). Thus, the previous output value in
equation 3.14, yt−1 or yt+1, is from the trace position differing by the repeat-
unit length (not the immediately adjacent position in the DNA fragment ladder).
Note that we still need to compute the output for every basepair position, to
accommodate all possible alleles. The repeat-unit length needs to be specified
manually for each marker. It is possible to automatically determine the repeat-
unit length by trying various values (2, 3 or 4) in minimizing equation 3.2, but
this might not worth the computational effort. The repeat-unit length of each
marker can be stored in a database along with its interval and dye channel
information.

After experimenting with several filter combinations, the following was found
to be satisfactory:

S = (G̃
2
F̃ )θ2,θ3,θ4 (3.17)

where the parameters θ2, θ3, and θ4 are used to specify, respectively, the scale
(σ) at the midpoint of the marker interval, how fast the variance changes with
length (a constant rate for dσ2/dt), and how large the scale of the right tail is
as a proportion of the scale of left tail. Examples of the impulse responses of S

are shown in figure 3.6.

Electrophoretic diffusion

Unlike the previous two transforms, this operator maps a vector in Rk to Rm.
The pattern of the previous transform, SA, is first ‘up-sampled’ by inserting
(T − 1) zeroes in between each basepair position. Afterwards, the diffusion
transform D is done in Rm.
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x

G̃
2
F̃ x

Figure 3.6: An example of the impulse response produced by the operator S. The

parameter values are θ2 = 2, θ3 = 0.2 and θ4 = 0.15.

The spread corresponding to each DNA fragment is roughly symmetrical and
rounded, thus multiple smoothing is needed. The following is used to model this
diffusion:

(FG)6θ5 . (3.18)

Another aspect of diffusion needs to be modeled is the “trailing blur” effect
found in some gels (for example, marker D6S257∗ on figure 1.5, page 11). This
effect is gel-specific and does not seem to be related to the marker itself. It
appears that some portion of the DNA molecules lags behind the main clusters
of stutter peaks. The main allelic patterns themselves are still fairly well defined,
while the trailing patterns are blurred. This can be modeled by superimposing
the original pattern with the blurred and lagged version of the signal using:

(1− θ7)I + θ7F
3
θ6 . (3.19)

The parameter θ6 specifies the blurring of the lagged pattern, and θ7 corresponds
to how much of the molecules lag behind. The overall effect of electrophoresis
is:

D =
{
(1− θ7)I + θ7F

3
θ6

}
(FG)6θ5 (3.20)

3.2.4 Model parameter optimization

Minimization of the 7-parameter model (equation 3.2) is done using the Nelder-
Mead downhill-simplex method [Nelder and Mead 1965]. The reason for this
choice is it is simple to implement and reasonably fast, even in the absent of
knowledge on the derivatives of the objective function. In fact, the RSS value
might contain discontinuities due to the combinatorial nature of the genotypes.
The objective function value might change smoothly when the parameter values
are perturbed, if the genotypes remain the same. However, when the pertur-
bation is such that one or more genotypes are switched, the RSS value might
suddenly jump.
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Such an objective function landscape naturally contains many local minima.
To find a global solution, restarts are performed following the method in Press
et al [1992, pp408–412]. After convergence is reached, all vertices of the simplex,
except the best one, are randomized by adding a fraction of an identity matrix.
The restarts need to be performed multiple times. We also found it useful to
restart even before convergence, after every certain number of iterations (say 50
cycles).

Because different markers vary in interval lengths (data dimensionality), the
RSS score in equation 3.2 needs to be adjusted so that the same tolerance for
convergence give roughly the same degree of fitness in different markers. We
use the ‘standardized RSS’:

SRSS =
RSS

n∑
j=1

‖yj‖2
, (3.21)

which takes values between 0 and 1. The same convergence criteria can then be
applied for all markers. For example, the difference between the SRSS values
of the best and worst vertices (∆SRSS) should be less than 0.005. The SRSS
score is also a rough indicator of the quality of a particular marker data set.
For example, a noisy data set will converge to a large SRSS value.

After experimenting with many markers, it was found necessary to put con-
straints on the values of the parameters. Obviously, parameters specifying pro-
portions should be between zero and one, and those specifying the scales of
impulse responses cannot be negative. Putting upper bounds on these parame-
ters also helps reduce the risk of being trapped in local minima. The bounds are
chosen to rule out “impossible” patterns, such as those with very wide spread
that are never encountered in practice. The “bounding box” of the parameter
space are shown in table 3.1, along with the initial values which are chosen from
the mean of the optimal values in typical markers. On average, fewer iteration
cycles are needed when these initial values are used.

The lower bounds of the parameters are set to zero to prevent meaningless
negative values, except for θ1, where it is set to 0.2, because θ1 = 0 and θ1 = 1
specify identical patterns (except that the allele label is shifted by one basepair).
The commonly used PIG tailing primer modification increases the rate of plusA
effect, thus making the pattern more consistent [Smith et al 1995b, Brownstein
et al 1996]. Therefore, in many data sets the true θ1 is very close to one. If
θ1 = 0 is allowed, this might be found as the answer for the markers with θ1 ≈ 1,
resulting in inconsistent allele labeling. This constraint disallows 0 ≤ θ1 < 0.2.
However, markers having such values have not been encountered so far.
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Table 3.1: Constraints and initial values of the model parameters.

parameter min max init comment

θ1 0.2 1 0.9 portion of plusA peaks

θ2 0 3 1.8 slippage scale at the interval midpoint
θ3 0 0.2 0.1 rate change of the slippage scale
θ4 0 0.2 0.025 portion of the right tail

θ5 0 0.75 0.35 scale of diffusion
θ6 0 1 0.125 extent of the trailing blur
θ7 0 1 0.2 portion of the trailing blur

ρ -0.01 0.05 N/A slope of the heterozygote curve (section 3.2.5)

3.2.5 Unequal amplification ratio

It has been widely observed that the shorter the allele, the more competitive
it is when co-amplified with a longer allele [Pálsson et al 1999], although no
quantitative model has been proposed for this phenomena. When the values of
the proportion of the shorter allele, αj/(αj +βj), are plotted against the length
differences, bj − aj , we can see that they follow a straight line (figure 3.7).
The degree to which the two alleles compete, as a function of length difference,
depends on the marker.

Although the trend follows a straight line, it is safer to fit the saturation
curve:

H(aj , bj , ρ) = 0.5 + 0.45 tanh {ρ (bj − aj)} , (3.22)

to ensure that the curve never crosses α/(α + β) = 1. The parameter ρ de-
termines the steepness of the curve. The offset 0.5 corresponds to the equal
amplification efficiency of the paternal and maternal alleles when aj = bj . The
factor 0.45 is to limit the saturation curve so that it does not reach α/(α+β) = 1.
There might be markers where the heterozygote patterns of certain genotypes
are inherently indistinguishable from the homozygote patterns of the shorter al-
leles [Ewen et al 2000], due to extreme difference in efficiency and the presence
of background noise. Lowering the asymptote of the curve prevents fitting to
false heterozygotes.

The parameter ρ is found by minimizing the least-squares fit:

min
ρ

n∑
j=1

[
H(bj , aj , ρ)−

αj
αj + βj

]2

. (3.23)

This is a non-linear optimization problem, which is solved by searching the value
of ρ in the interval [−0.01, 0.05]. Values outside this range do not seem to be
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Figure 3.7: Examples of the relationship between the proportion of the shorter allele,

α/(α+ β), and length difference, b − a, for the ‘best’ genotype that minimizes equa-

tion 3.2. The trend roughly follows a straight line, with intercept at (0, 0.5), which

is expected for homozygotes. The slope is marker specific. The outliers (points away

from the main trend) are homozygotes with significantly high values of the second

coefficient (usually falsely explaining the stutter artefacts as an allele).
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reasonable (the ratio is too different, or violate the “shorter-is-stronger” rule).
To make the fitting more resistant to false heterozygotes, robust regression is
used (using iterative reweighting and Hampel’s influence function described in
Campbell [1980]). Examples of the best-fit curves are shown in figure 3.7.

3.3 Results and discussion

The ultimate assessment of the model’s performance is the calling accuracy of
the whole system, to be presented in chapter 4. Here, we only present some
examples to illustrate the ability of the model to adapt to a wide range of
markers.

3.3.1 Model fitting

Figure 3.8 illustrates the change of the SRSS throughout the Nelder-Mead it-
erations. The corresponding trace data and reconstructed models are shown
in figure 3.9. On a ‘good’ marker (figure 3.8a and 3.9a), with a typical model
parameter values, convergence is fast, and a low SRSS value can be achieved.
Marker data with unusual allelic shapes (figure 3.8b and 3.9b) may take a while
to fit, requiring several restarts. This data also illustrates the ‘trailing blur’
effect that necessitates the use of θ6 and θ7 parameters. On noisy data, such
as those with very weak signal and therefore high background noise (figure 3.8c
and 3.9c), the SRSS values cannot drop too far.

Manual examination of plots such as those in figure 3.9 indicates that the
proposed model for allelic pattern generation works well for most markers. Al-
though the patterns generated by the model does not always fit tightly (compare
figure 3.9b and 3.9a), the best genotype chosen is still correct most of the time.
The optimality of the fit does have some effects on the calling performance.
More lenient convergence criteria (or no restart) produce less optimal allelic
patterns, resulting in some erroneous choices of the best genotypes.

Currently, the iteration is allowed to proceed for 50 cycles (or ∆SRSS <

0.005) before a restart is enforced, unless ∆SRSS < 0.001, in which case no
more optimization needs to be done. Four restarts might be done before the
whole optimization terminates. On a Pentium II/450 MHz running Linux, it
typically takes 15 to 30 seconds to process a marker data set with 96 lanes,
depending on the size of the marker interval (the dimension of data vector, m,
is typically between 200 to 500). We have not yet explored other global opti-
mization strategies that might give similar or better fitness with fewer iteration
cycles.

The distribution of optimal SRSS values of 354 different data set is shown
in figure 3.10. A typical ‘good’ marker will have an SRSS value less than 0.05.
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Figure 3.8: Examples of the drop of SRSS values (of the best vertex) during the

Nelder-Mead optimization. The dashed vertical lines are restarts.
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a) p08/001/D6S289, SRSS = 0.026, θ = (0.74, 1.78, 0.06, 0.01, 0.40, 0.10, 0.26), ρ = 0.023

b) p09/095/D5S426, SRSS = 0.076, θ = (0.97, 1.94, 0.11, 0.17, 0.43, 0.09, 0.55), ρ = 0.024

c) p08/001/D6S281, SRSS = 0.202, θ = (0.86, 1.90, 0.05, 0.09, 0.38, 0.10, 0.26), ρ = 0.050

Figure 3.9: Illustrations of the fit between the data (black lines) and the model (red

lines). The data sets are the same with those in figure 3.8.
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Figure 3.10: The distribution of SRSS found by the optimization procedure, from

354 markers. Note that 6 data points with SRSS > 0.5 are not shown.

Those with SRSS value > 0.2 are outliers which indicate bad data, such as
those shown in figure 3.9c, or more rarely, very atypical allelic patterns. The
distributions of marker parameters θ1, . . . , θ7 and ρ are shown in figure 3.11.
The main peaks of the distributions are contained well within the parameter
constraints (table 3.1). The initial values also coincide with the optimal values
of typical markers.

The knowledge about the parameter and SRSS values distribution can be
used as diagnostics for detecting ‘pathological’ markers or runs. We have not
yet incorporated the deviation from the expected values into the quality values
(chapter 4). For the time being, the histograms can be used as guidelines for
markers requiring special attention or extended optimization cycles.

Overall, we found that the proposed model can adaptively fit a wide range of
marker data very well. The versatility might be attributable to our approach of
decomposing the trace patterns into transformations that closely resemble the
underlying physical processes. Although the model does not attempt to metic-
ulously mimic the biochemical process, such as considering the probability of
polymerase slippage per repeat per replication and its convolution throughout
PCR cycles, the resulting patterns are similar enough to observed stutter pat-
terns and sufficient for our purpose. Unlike the model proposed by Miller and
Yuan [1997], which only deals with polymerase slippage, our model incorporates
other artefacts such as plusA and electrophoretic diffusion. For the purpose of
allele calling, these effects are equally important.

There are many advantages in being able to represent the measurement
process compactly using a few parameters. Unlike in the method proposed by

90



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Θ1

0

10

20

30

40

50

co
un

ts

1 1.25 1.5 1.75 2 2.25 2.5 2.75
Θ2

0

5

10

15

20

co
un

ts

0.025 0.05 0.075 0.1 0.125 0.15 0.175
Θ3

0

5

10

15

20

25

co
un

ts

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
Θ4

0

5

10

15

20

25

30

35

co
un

ts

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
Θ5

0

10

20

30

co
un

ts

0.08 0.1 0.12 0.14 0.16 0.18 0.2
Θ6

0

10

20

30

40

50

co
un

ts

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Θ7

0

10

20

30

40

co
un

ts

0 0.01 0.02 0.03 0.04 0.05
Ρ

0

10

20

30

40

50

co
un

ts

Figure 3.11: Distribution of the fitted parameter values on 354 data sets. See

table 3.1 (page 85) for the descriptions of the parameters.
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Perlin et al [1995], there is no need to use training sets to build the allelic pattern
library. The reproducibility and the regularity of the allelic patterns, as well
as the large number of lanes in a typical run, make it possible to estimate the
patterns directly from the observations. Our model flexibly adapts to changes
in experimental conditions, as long as the resulting variations in allelic shapes
are well within the range of possibilities allowed by the model. Poor fits of the
model (the outliers in figure 3.10) are usually attributable to many noisy traces
in the data, due to weak amplification affecting the whole data set, or inherently
problematic markers that are hard to score manually.

Our method differs from the data-adaptive approach by Stoughton et al
[1997], which constructs the allelic shapes directly from the traces. Although
their method can extract patterns from homozygotes and well-separated het-
erozygotes, it becomes problematic when some alleles are present only in over-
lap with other alleles. In contrast, our method can even predict the patterns of
unobserved alleles.

Further improvement of the model is not impossible. The arrangement of
the recursive filter cascades was chosen through a trial-and-error process, by
visually inspecting the fit and intuitively changing the arrangements. It should
be possible to parameterize the arrangement, and automatically search, using
techniques of combinatorial optimization, for a better design that can fit a wide
range of markers with, say, better SRSS value on average and less computation
time. Note that this optimization needs to be done only once using a large
number of traces with known genotypes. The resulting ‘optimal pattern gener-
ator’ would still have parameters to be estimated for each marker data set, as
outlined above.

3.3.2 GLSA caller

It is useful to see the performance of this ‘naive’ allele caller, before adding
more sophisticated discrimination rules. A detailed description of the validation
methods will be presented in chapter 4. Roughly, we need to see the trade-off
between calling error (which can be minimized by rejecting unreliable observa-
tions) and the number of correct calls (which is also reduced when more data
are thrown away). In GLSA allele caller, the z2 score (equation 3.7) is used
as the quality indicator. The trade-off between the error rate (percent miscalls
in the accepted observations) and the ‘hit’ rate (the number of correct calls) is
shown in figure 3.12.

GLSA can correctly call up to 85% of the data (where manual calls are
available for 96% of them). This is achieved at a cutoff level which contains
around 9% error. The error rate goes down slowly as the quality requirement is
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Figure 3.12: The performance of GLSA allele caller. The automated calls are com-

pared with manual calls on 7792 traces (on 87 markers, 3 runs of different individuals

for each marker). ‘% error’ is the percent errors per number called (those in the

data subset selected by the z2 cutoff). ‘% hit’ is the percent correct call (of the total

number of traces). The trade-off between the two as the function of the z2 cutoff is

shown by the solid curve (for all types of discrepancies including those where GLSA

calls but human discard) and dashed curve (for ‘definite’ miscalls, where both GLSA

and human make the calls but the genotypes differ). 96% of the data has manually

called genotypes, some of them based on repeated measurements, whose traces are not

used by GLSA (the remaining 4% of the data cannot be called, even after repeated

measurements). The ‘×’ mark indicates the performance of human analysts on the

same set of traces (without considering the repeated measurements), at 92% hit and

(estimated) 0.2% error. ‘% relative hit’ corresponds to GLSA hit rate relative to the

human hit rate.
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increased (by lowering the maximum acceptable z2 value). The error rate never
reaches below 1% required by most downstream genetic analysis. To bring the
error rate below 4%, 90% of the data has to be discarded. The z2 can throw
away bad data which GLSA cannot call reliably (those with z2 > 0.1), but it is
not a good indicator of the error rate for z2 ≤ 0.1, as indicated by the almost
constant error rate (between 4% and 6%) for most of the data. Nevertheless,
GLSA can correctly call up 80% of the data at that error range, and thus the
z2 score should be useful as a ‘feature variable’ in a more sophisticated allele
caller.

Somewhat similar performance was obtained for the ‘TrueAllele’ system [Per-
lin et al 1995, Perlin 2000], which was reported in Pálsson et al [1999]. The
error rate overall was 719/7596 = 9.4%. Unfortunately, they did not report the
performance using a varying cutoff for data rejection, thus we cannot see how
it performs on the portion of the data with better quality. The algorithm is
based on least-squares fitting of two best alleles, as in GLSA, except that the
patterns are calibrated using training sets. Only after additional ad hoc rules
(as implemented in the software ‘DecodeGT’) are applied, the performance can
be improved to 1.12% miscalls (although it is not clear how much of the data
needed to be discarded).

3.3.3 Unequal amplification model

The main purpose of modeling unequal amplification ratio is to obtain the ex-
pected proportions of the two coefficients, for any pair of alleles. The rela-
tionship between the allelic proportion in heterozygotes and their difference in
length is surprisingly simple (figure 3.7 shows the plots for typical markers).
Within one marker, the allelic proportion is largely determined by the length
difference.

It is not clear yet how this can be explained by the underlying kinetics.
Such a physical model should consider the change of the relative quantities of
the fragments throughout PCR cycles, with each fragment having a ‘competi-
tiveness index’ that might be length dependent. It is plausible to assume that
the probability of a strand synthesis being completed in cycle decreases with the
length of the strand. Better understanding of the unequal amplification phenom-
ena will be very useful for analyzing quantitative assays using microsatellites:
loss-of-heterozygosity detection [Sidransky 1994] and genotype pooling [Kirov
et al 2000].

For our ‘qualitative genotyping’ purpose, the model above suffices. In addi-

94



tion to the z2 score, now we also have the h2 score:

h2
a,b,j =

[
α

α+ β
−H(aj , bj , ρ)

]2

(3.24)

where H(a, b, ρ) is the heterozygote curve (equation 3.22). The next chapter
describes how the two metrics produced by our model, the least-squares dis-
tances to the expected pattern and heterozygote proportion, are integrated into
a discrimination rule for choosing the most likely genotype.
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Chapter 4

Allele Calling and Quality Scores

4.1 Overview

In the previous chapter, we have seen that although the allelic pattern model
can be fitted well, the performance of the GLSA caller is poor. In the TrueAl-
lele/ Decode-GT system, Pálsson et al [1999] use a number of ad hoc rules to
flag ‘bad’ traces, so that the automated calls that are likely to be erroneous can
be separated from the ‘good’ ones. The new allele caller from Applied Biosys-
tem, the ABI GeneMapper1, uses many different metrics called ‘process-based
quality values’ to flag traces that need to discarded, checked manually or ac-
cepted. However, neither uses a quality indicator that has predictive ability, i.e.
corresponds to the error rate within the subset of the data selected by a certain
threshold, such as the PHRED quality score that has been found to be very use-
ful for quality control in DNA sequencing [Ewing and Green 1998, Richterich
1998]. Devising such quality score for microsatellite genotyping is understand-
ably more difficult, due to the heterogeneity of marker-specific behaviors. The
trace alignment and allelic pattern model presented in the previous two chapters
are estimates of the marker-specific characteristics. It is therefore reasonable to
treat the deviations from the model as ingredients for a quality score, which is
hopefully marker-independent and predictive.

We use the same quality score for choosing the most likely genotype and
throwing away bad observations. This quality score is computed for each pos-
sible genotype (a, b), not just for the ‘best’ genotype found by the GLSA algo-
rithm. Thus, instead of only flagging bad observations, the quality score ranks
alternative genotypes according to their closeness to the true genotype. The
best scoring genotype is chosen as the call. If the data is ambiguous, it is pos-
sible that the top few genotypes are very similar. Presenting the alternatives
will help manual editing as well as downstream analysis methods that can take

1www.appliedbiosystems.com
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ambiguous genotypes (instead of simply declaring the genotype as ‘unknown’).
The quality score should also be comparable across traces (not just for rank-
ing genotype within one trace), therefore it can be used to rank the traces in
a marker data set based on the quality of the best genotype. This will help
manual editing by putting higher priority on problematic traces. Ultimately, if
the score is comparable across markers and runs, it will be a useful tool for data
handling and quality control in large genotyping projects.

There are many ways to devise a score based on features derived from the
measurements. We have explored a simple one, which uses a linear combination
of feature variables that are assumed to be deviations from the expected ‘good’
value. This is illustrated by the following example. Both the z2 and h2 scores
are indicators of ‘error’ from the model, thus it is natural to combine the z2 and
h2 scores into the weighted sum:

Qa,b,j = wz z
2
a,b,j + wh h

2
a,b,j (4.1)

where wz and wh are the weights that correspond to the relative contribution
of each distance. The ‘Q-score’ is then used to select the best genotype. An
example is shown in figure 4.1 and 4.2. In the plane spanned by z2 and h2, the
weights define a direction that determines the ranking of the genotypes. How
to find the optimal weights is one of the methods proposed in this chapter.

In addition to the heterozygote ratio, there are other ‘features’ that can be
used to improve discrimination. The signal intensity has so far been ignored
because we focused on the trace pattern. The information about the intensity is
partially contained in the z2 score because weak signals tend to be more noisy.
Explicitly incorporating the heights of the main allelic peaks into the quality
was found to improve the ranking of alternative genotypes. Other features that
were found to be useful are the sharpness of the allelic peaks and the amount
of shift introduced to align the trace (chapter 2).

All these features are combined in a manner similar to combining z2 and
h2 in the example above. The sum of squared errors2 used for the Q-score
is reminiscent of a χ2 statistic. However, the arbitrary weighting (which is
to be empirically derived) does not allow strict interpretation of the Q-scores
as χ2 statistics with a certain degree of freedom. Furthermore, each individual
feature may not be χ2

1-distributed. Nevertheless, the resulting Q-score is roughly
gamma distributed, although the scale and shape might be specific to each
marker data set. To obtain a more marker-independent score, the distribution of
the second-best Q-scores in a marker data set is used as the “noise” distribution.

2The z2 itself is a standardized regression residual, which is the sum of squared deviations

at all data points of a trace. If the background noise at each data point is normally distributed

(i.i.d.), then the z2 is a (scaled) χ2 statistic.
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Figure 4.1: Panel a) shows the z2 score of all possible genotypes (not all visible) for

each trace (identified by the lane number). Those corresponding to the true genotypes

are plotted in colored circle, blue for heterozygotes and red for homozygotes. The

black dots are the values for incorrect genotypes. ‘×’ indicates a trace that should

be discarded. Note that for homozygotes, there are usually one or more (incorrect)

genotypes with smaller z2 score. Panel b) shows similar plot, but z2 + 0.5h2 is used

to rank the genotypes. Most of the homozygotes genotypes now have the best score.

There is one heterozygote genotype (lane 22) called incorrectly under this score. The

marker data set is t05/103/D4S406.
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Figure 4.2: Another way to visualize the use of the combined score. All points on the

same gray line have the same value of z2 + 0.5h2 (the values for the three lines are

0.05, 0.075 and 0.1). The combined score corresponds to locations along the direction

perpendicular to the gray lines. Discrimination between true and false genotypes is

much improved compared to using z2 alone (which is equivalent to using vertical lines).

The data set is the same as that in figure 4.1.
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A new quality indicator called the L-score is derived from the density fitted to
the second-best Q-scores in each marker data set.

We do not assume any probability model as the basis for this approach. Here,
we present our discrimination rule as an ad hoc method, justified empirically.
In the future, it might be possible to treat this problem more properly using a
formal probabilistic approach. The rest of this chapter assesses the performance
of the proposed allele calling rules and the ability of the quality score to predict
the error rate. Based on the test results, a suggestion is made on how to use
the algorithm in a genotyping system.

4.2 Methods

4.2.1 Formulation

Selecting the best genotypes for the trace yj is done by ranking all possible
genotypes (a, b), according to a quality score Qa,b,j . A certain threshold of this
score will also used to reject bad quality traces (at least within the same marker
and run). A perfect trace will have Qa,b,j = 0 for the true genotype (a, b).

The Q-score is derived by combining several features. Each feature is a
distance measure, which can be computed for all possible pair (a, b) given a
trace yj . Let di(a, b, j) denotes this distance for feature i. The z2 and h2

mentioned above are examples of feature variables. The quality score is the
weighted sum:

Qa,b,j =
p∑
i=1

wi di(a, b, j) wi ≥ 0 . (4.2)

The features are assumed to be marker-independent (after the lengthy proce-
dures to remove marker-specific effects described in the previous two chapters).
This allows the same weight vector w = (w1, . . . , wp) to be used in different
markers. This means that w can be calibrated using a set of markers that
might be different from those to be analyzed automatically. Marker-specific
Q-scores could be more powerful, but the calibration requires more effort and
newly encountered markers can not be handled. Here, we are exploring how far
a marker-independent rule can be pushed.

The weights specify the contribution of each feature to the score. As illus-
trated in the introduction, the weight vector w defines parallel hyperplanes in
the feature space. The direction of these hyperplanes can change the ranking of
alternative genotypes in a trace, and one particular hyperplane (a certain value
of Q) can be chosen to accept or reject a trace if the best genotype of that trace
still lies outside the hyperplane, i.e. not on the same side as the origin.
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The direction of the hyperplane is optimized based on the desired trade-off
between the error and hit rate. In practice, the trade-off at a specific error rate
is more important than averaged performance. A caller that performs badly
on the whole data but can guarantee less than, say, 1% error for a portion of
the data might be more useful than that with a better overall performance but
yields fewer correct calls for the same error rate. With the former, manual
recheck can be skipped altogether for some of the data, while with the latter,
re-examination needs to be done for a larger portion of the data (although less
editing is required overall). We therefore decided to find w that maximizes the
number of correct calls for the acceptable error rate, which is 1% in our case.
This is the objective function of a generic, constrained optimization problem.

Although the weights optimized using a large number of markers may be
applied to different markers, the actual magnitude of the Q-score might not be
comparable. To obtain a score with the same meaning across markers, we used
another score derived from the Q-score. This score, called the L-score, is the
cumulative distribution function of the second-best Q-scores.

4.2.2 Feature variables

In addition to the z2 and h2 mentioned before, we use three other features. They
are chosen based on several types of common miscalls which are not reflected in
the z2 and h2 score alone. Signal strength needs to be explicitly included. These
are the heights of the main allelic peaks. Our approach does not perform peak
detection step but directly compare the whole high-resolution trace pattern.
There are often high-intensity “blurs” and “blobs”, which obviously do not
correspond to DNA fragment peaks, but the least-squares fitness criteria will
attempt to explain them. Such contaminants usually have dull and rounded
signal at the location of the main allelic peaks (and they might not even be
local maxima). A bandpass filter can highlight true DNA fragment peaks (see
figure 2.9, page 52). The intensity of the filtered signal, relative to the original
one, may indicate if a region of the trace is ‘peaked’ enough for a DNA fragment.
Lastly, the trace alignment algorithm in chapter 2 shifts the location of peaks
so that they can be easily compared across lanes. If a peak strays too far from
the expected location, say by nearly ±0.5 bp, it might be shifted in the wrong
direction.

The features need to be transformed into non-negative values that increase
with decreasing quality. We have not yet explored thoroughly the effect of
their distributions on the discrimination ability. We found that squaring the
deviations make them roughly χ2

1 or gamma distributed with longer tail (with
shape parameters less than 0.5). Without implying a χ2 model, we re-formulate
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the Q-score as:

Q =
p∑
i=1

wi
[fi(a, b, j)]2

σ2
i

wi ≥ 0. (4.3)

where fi is an ‘appropriately transformed’ feature variable. The variables are
standardized by σ2

i to make the scales of different features roughly in the same
order of magnitude. The actual magnitude of σ2

i is not so important for the
score because the optimized weights can absorb arbitrary scales. However, stan-
dardized feature variables make the values of the weights more intuitive (they
can be seen roughly as proportions of ‘contribution’ to the decision making) and
experimenting with initial values and constraints for the optimization procedure
is easier.

The distributions of the features for the true genotypes in some markers are
shown in figure 4.3 and their definitions and transformations are detailed below.

1. Allelic pattern fit

This is based on the z2 score (equation 3.7).

d1(a, b, j) =
z2
a,b,j

σ2
1

, (4.4)

where σ2
1 is chosen to be 0.05. This is based roughly on the order of

magnitude of the sample variance of some marker data sets, rounded to a
‘convenient’ number. See figure 4.3a to compare with the distributions in
various markers. σ2

i for other features are chosen in similar way.

2. Deviation from the expected ratio

This is based on the h2 score (equation 3.24).

d2(a, b, j) =
h2
a,b,j

σ2
2

(4.5)

where σ2
2 = 0.005.

3. Peak heights

Let ta and tb the size of allele a and b in basepairs. yj(ta) is the trace
intensity at position ta of trace yj . In ABI trace files, the peak heights
range from 0 to 8192 (13-bit digitized fluorescence intensity), with the
background noise level fluctuating around ±10 units. A peak height of
50 is often used as the minimum for a meaningful peak (for example, in

101



0 0.1 0.2 0.3 0.4 0.5 0.6
z2

m
ar

ke
rs

t24�001�D17S784

t24�001�D17S785

t24�001�D17S921

t24�001�D17S928

t24�001�D17S938

t24�001�D17S944

t24�001�D18S1161

t24�001�D18S452

t24�001�D18S464

t24�001�D18S474

t24�001�D18S53

t24�001�D18S59

t24�001�D18S63

t24�001�D18S64

t24�001�D18S68

éééééééééé éé éééé éé éé

ééééééééé éé ééé éééé

éééééééééé ééé ééé éééé

éé éééééééé éé éé ééé éé é

éééééééééé ééééééééé é

ééééé éééé éé éé é ééé é é

éééééééééé éé é éé éééé é

éééééééééé éééé ééé éé é

éééééééééé éé ééé ééééé

éééééééééé éééé éé ééé é

éééééééééé é ééééééé é é

éééééééééé ééé ééé éééé

ééééééééé é ééé éé éé é

ééééééééé ééé éé ééé é

éééééééééé é éé éé éééé é

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
h2

m
ar

ke
rs

t24�001�D17S784

t24�001�D17S785

t24�001�D17S921

t24�001�D17S928

t24�001�D17S938

t24�001�D17S944

t24�001�D18S1161

t24�001�D18S452

t24�001�D18S464

t24�001�D18S474

t24�001�D18S53

t24�001�D18S59

t24�001�D18S63

t24�001�D18S64

t24�001�D18S68

ééééééééééééééééééééé é ééééé éé é é

éééééééééééééééééééé é é éé é éé éé

ééééééééééééééééééééééééééééé éé éé éééé éé

éééééééééééé é é é éé é é ééé

éééééééééééééééééé ééééé éé ééé

éééééééééééééééééééééééééé éé é éé éé é éé

éééééééééééééééééééé é ééé éé éééé

éééééééééé é éééé éé éé é

ééééééééééééééééééééééééééééééééééééééééééééééé éé éé ééé é é é

éééééééééééééééé é éé éé é éé éé

ééééééééééééééé éé é éé éé éé é

éééééééééééééé éé éééééé é é

ééééééééééééé é ééé é éé éé

éééééééééééééé éé éé éé ééé

éééééééééééééééééé ééé ééééé éé

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Τa

2 +Τb
2

m
ar

ke
rs

t24�001�D17S784

t24�001�D17S785

t24�001�D17S921

t24�001�D17S928

t24�001�D17S938

t24�001�D17S944

t24�001�D18S1161

t24�001�D18S452

t24�001�D18S464

t24�001�D18S474

t24�001�D18S53

t24�001�D18S59

t24�001�D18S63

t24�001�D18S64

t24�001�D18S68

ééééééééééééééééé é éééé ééééé

ééééééééééééééééééééé éé éé ééé éé

éééééééééééééééééééééééééééééééééééééééééééééé éé éééééé éé

éééééééééé é éé ééé éé éé

ééééééééééééééééééééééééééééééééééééééé éé éé éé éé é é

ééééééééééééééééééééééééééééééééééééééééééééééééé ééééé ééééé

éééééééééééééééééééééééééééééééééééééééééé éééééé éééé

éééééééééé é éé éé é éé é é

éééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééé

ééééééééééééééééééééé é éé éé éé éé é

ééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééé éééééééééééé éééééééééééééééééééééééééééééééééééééééééééééééééééééééééé

éééééééééééééééééééééééééééééé ééé é ééééé é

ééééééééééé é éé éé é é é é

ééééééééé é ééééé é éé

ééééééééééééééééééééééééééééééééé é éééé ééééé

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
Γa

2 +Γb
2

m
ar

ke
rs

t24�001�D17S784

t24�001�D17S785

t24�001�D17S921

t24�001�D17S928

t24�001�D17S938

t24�001�D17S944

t24�001�D18S1161

t24�001�D18S452

t24�001�D18S464

t24�001�D18S474

t24�001�D18S53

t24�001�D18S59

t24�001�D18S63

t24�001�D18S64

t24�001�D18S68

ééééééééééééééééééééééééééééééééééééééééééééééééééééé éé éé éé ééé é

ééééééééééééééééééééééééééééééééé ééé é éé é éé

éééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééééé éé ééé ééééé

éééééééééééééééééééééééééééééééééééééééééééééééééééé é éééé ééé é é

éééééééééééééééééééééééééééé é ééé é ééééé

éééééééééééééééééééééééééééééééééééééééééééééééééééé éé ééé éé ééé

ééééééééééééééééééééééééééééééééééééééééééééééééééééééééé é éé éé ééééé

éééééééééé ééé éé é éé éé

éééééééééé ééé éé ééé éé

ééééééééééééééééééééééééééééééééééééé ééééé éé é éé

éééééééééééééééééééééééééé ééé é ééééé é

éééééééééééééééééééééééé éé éé éééé éé

ééééééééééééééééééééééééééééééééééééééé ééé ééé éé é

éééééééééé é é ééé éé éé

ééééééééééééééééééééééééééééééééééééééééééééééééééé éééé é ééé éé

0 0.05 0.1 0.15 0.2 0.25 0.3
Ψa

2 +Ψb
2

m
ar

ke
rs

t24�001�D17S784

t24�001�D17S785

t24�001�D17S921

t24�001�D17S928

t24�001�D17S938

t24�001�D17S944

t24�001�D18S1161

t24�001�D18S452

t24�001�D18S464

t24�001�D18S474

t24�001�D18S53

t24�001�D18S59

t24�001�D18S63

t24�001�D18S64

t24�001�D18S68

éééééééééééé éé éé éééé éé é

ééééééééééééé éé é éééé éé

ééééééééééé ééé éééé ééé

éééééééééé é éé ééé é éé é

ééééééééééé é é é éé éééé é

ééééééééé éé é ééé é ééé

éééééééééé éééé ééé éé é

éééééééééé é éé ééé é éé é

éééééééééééééé é éé éé é éé é é

éééééééééé éé ééé ééé éé

ééééééééééé éé éééé éé é é

ééééééééééé é éééé éééé é

éééééééééééé é é ééé éééé

ééé éééééé é ééé ééé éé

ééééééééééé é éé éé éé ééé

Figure 4.3: The distributions of the feature values for the true genotypes in several

markers. They are long-tailed and symmetrical, and the distributions of each variable

are fairly similar across markers. Those with the median shifted to the right and more

spread out tails are known as ‘problematic’ markers. For example, the ψ2
a +ψ2

b values

of D1S64, D1S464 and D1S944 are more variable because the ranges of these markers

are above 300 bp, where electrophoretic migration is more “jittery”.
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Pálsson et al [1999]). We use this score for each allele:

τ2
a,j =



0 if yj(ta) > 500

[log10{yj(ta)} − log10(500)]2 10 ≤ yj(ta) ≤ 500

+∞ otherwise

(4.6)

For the genotype (a, b):

d3(a, b, j) =
τ2
a,j + τ2

b,j

2σ2
3

(4.7)

where σ2
3 = 0.125. Note that this transformation is very specific to the

fluorescence intensity unit in ABI trace files. The scales seem to be fairly
consistent across different runs and ABI 377 machines.

4. Peak sharpness

Similar to peak highlighting method in chapter 2 (figure 2.9), we can
bandpass filter the trace yj to produce a signal vj with highlighted peaks:

vj = Byj (4.8)

The bandpass filter B is a cascade of single-pole lowpass and highpass
filters (see appendix A), parameterized such that the gain is 0.5 at the
frequency 0.5 and 3 bp per cycles, respectively. The value of vj(ta)/yj(ta)
is the ‘sharpness index’, which is independent of the signal strength.

The squared deviation from the expected sharpness is:

γ2
a,j =



0 vj(ta)/yj(ta) ≥ 0.3

[
0.3− vj(ta)

yj(ta)

]2

if 0 < vj(ta)/yj(ta) < 0.3

+∞ otherwise

(4.9)

For the genotype (a, b):

d4(a, b, j) =
γ2
a,j + γ2

b,j

2σ2
4

(4.10)

where σ2
4 = 0.01. Note that the transformation is specific to the particular

trace data (and the parameterization of the filter B). The constant 0.3 is
the typical value of vj(ta)/yj(ta) for good peaks.
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5. Alignment shift

The trace alignment algorithm (chapter 2) estimates the curve that maps
the expected DNA fragment size t to the observed size u:

u(t) = t+ φ(t) + ψj(t) (4.11)

where φ(t) is the systematic warping and ψj(t) is lane-specific, random
“jitter”. Large ψ(ta) or ψ(tb) indicates allelic peaks that stray too far
from the expected location. The amount of shift can be used directly:

d5(a, b, j) =
ψ2
j (ta) + ψ2

j (tb)
2σ2

5

(4.12)

where σ2
5 = 0.01.

Ad hoc rules

There are also a number of ad hoc rules that were found to improve the perfor-
mance significantly. These can be seen as features that have the value of either
0 or +∞ depending on whether the condition is satisfied. The rules are:

1. The weaker allele should not be too small in proportion to the large one.
If α/(α+ β) < 0.025 or α/(α+ β) > 0.975, then Qa,b,j = +∞.

2. The stutter peaks are occasionally explained better by a false allele. The
following rule reduces the frequency of these incidents. if α < β and
b− a ≤ 2, use 2h2

a,b,j instead of h2
a,b,j . That is, if the two alleles are close

together, and the shorter allele is weaker, then the deviation is increased
to penalize the genotype.

3. If we allow the two alleles to differ by one bp, many homozygotes are
falsely described by a pair where b − a = 1 or b − a = 3. For most
dinucleotide markers, such pairs are never observed. The following rule
is used: if b − a < 4 and b − a is odd, throw away the genotype. Some
markers are known to contain pairs with alleles differing by odd numbers.
The rule above can be dropped for these markers (identified manually).
Automatic detection of these ‘odd’ markers is still being investigated. The
following rule seems to work for many cases: if the frequency of odd b− a
for b − a > 4 is higher than 10%, the marker might be a genuine ‘odd’
marker.

4.2.3 Weight optimization

The weights in equation 4.2 need to be chosen so that the hit rate is maximized
for a given error rate. This is done empirically based on a ‘training’ data set.
The objective function is computed as follows:
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• Given a weight vector w, compute Q(a, b, j) for all j. In practice, it is
sufficient to use the top twenty genotypes based on z2 alone, because
it is the dominant feature. This cuts down the computational expense
dramatically.

• For each trace j, choose the best Q(a, b, j) as the called genotype.

• Sort the traces according to Q(a, b, j), and loop through them in ascending
order, accumulating the number of error and correct calls. Stop when a
specified error rate is reached, and return the cumulative counts of correct
calls as the objective function value.

We consider failed measurements as errors, because we want them to have large
Q-score. The error rate chosen is 1%, which is close to the ‘critical’ rate for
genotyping data [Weeks et al 2002]. The performance curve tends to be some-
what smooth, so the hit rates for similar error rates are maximized as well.
Using smaller error rate leads to a “bumpy” objective function landscape be-
cause of the smaller number of traces taken into account. Using larger error
rate produces suboptimal ranking in the lower error range.

The optimization of the weights is done using the Nelder-Mead downhill
simplex method [Nelder and Mead 1965]; the same tool we use for model fitting
in chapter 3. The rationale is similar: there is no information about the objective
function’s derivatives (and it might be non-differentiable in some parts due to
the discrete nature of the hit counts). Furthermore, w needs to be constrained
and the number of parameters to be optimized is small. For p weights, only
p − 1 of them needs to be optimized, because we are interested only in their
relative magnitudes, i.e. the direction of the hyperplane, not how far it is from
the origin. The weight for the z2 score is fixed to one, and thus only four
parameters need to be optimized. To escape local minima, we use several runs
with completely randomized starting vertices (including the best vertex). For
each run, multiple restarts as described in chapter 3 are also performed.

4.2.4 The L-score

The Q-score optimized as above is not necessarily comparable across different
markers. Although within each marker it ranks the observations reasonably
consistently (unreliable traces tend to have larger score), the same cutoff might
not correspond to the same error rate. Firstly, the Q-score of the best genotype
might not be equally distributed across markers. Secondly, the ability to dis-
criminate depends not only on the scores for the best genotype, but also on the
distribution of the scores for the second-best genotype. If the two are very close
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or overlapping, calling errors are more likely. Figure 4.4 shows two examples of
marker-specific distribution of the best and second-best Q-scores.

As shown in the picture, we fit a gamma distribution to the second-best
distribution. A new quality score, called the L-score, is defined as follows:

La,b,j = − log10

∫ Qa,b,j

0

G(q;θ) dq (4.13)

where G(q;θ) is the p.d.f. of the gamma distribution. The integral is the value
of the cumulative distribution function at Qa,b,j . The negative of the log is used
because it is more intuitive (the higher the score, the better the quality) and
the meaningful range, to be demonstrated later, is conveniently between 0 (the
worst quality, unusable data) and 10 (extremely good quality). We don’t have
any theoretical rationale for using the c.d.f. value (although this is somewhat
analogous to using the p-value of a null hypothesis as a test statistic). The
c.d.f. is simply considered a monotone transform of the Q-score (adjusted to
each data set), and the relationship between the L-score and the error rate is to
be determined empirically.

The parameter vector θ (the shape and scale of the gamma distribution) is
estimated from the data using the maximum likelihood criterion. This has to
be done iteratively, and although better method exists, it is quite simple to do
so using the Nelder-Mead downhill simplex method3, directly using the data
likelihood as the objective function to maximize the two parameters of gamma
distributions, with non-negativity constraints on the parameters. Data points
with Q > 10 are considered outliers and thrown away before fitting the p.d.f.

4.2.5 Training and test data sets

Ideally, data sets with known “true” genotypes should be used. The ultimate
way to look at the number of microsatellite repeats is by sequencing, but this is
expensive and available only for a very few samples (such as the CEPH family
member controls). There are also control samples that have been genotyped
independently many times and used for testing the overall performance of geno-
typing labs [Weeks et al 2002]. We had no immediate access to such data, and
furthermore, our method relies on having a large number of individuals per
marker to estimate the model parameters. We therefore decided to use data set
from the archive of the AGRF. These are traces and manual calls from the daily
operation of the genotyping center. The advantage of using these data sets, in
addition to their very large sizes, is that they reflect the reality of the genotyping
operation. Some traces might be of bad quality because of poor DNA sample

3Already implemented in the allele calling program for other purposes.
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Figure 4.4: Examples of marker-specific distributions of the Q-score. In all plots, the

histograms of the Q-scores for the best genotypes are shown in red, while those for the

second-best genotypes are shown in green. In panel a the distributions of the best and

second-best scores are well separated. Panel b and c shows overlapping distributions.

The purple bell-shaped curves are gamma densities fitted to the second-best scores.

The blue sigmoidal curves are the c.d.f. of the density up to Q (the values are indicated

by the scales on the right vertical axis of each plot).
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quality and certain markers might be inherently problematic (weakly amplified,
prone to fluorescence cross-talk, or having atypical patterns).

We arbitrarily chose genotyping data from 10 different panels in the ABI
Linkage Mapping Set v2.0. For each panel, 3 different runs of different individual
samples were used. Each run has approximately 90+ lanes (ignoring the positive
and negative controls). Two panels, panel 5 and 24, were used as the training
set (with 29 distinct markers), while the rest (panel 8, 9, 10, 11, 12, 16, 19,
and 20) were used as the test set, containing 118 distinct markers. The total
number of traces4 are 7,792 for the training set and 33,003 for the test set. All
electrophoresis runs were performed on ABI 377 machines. Preprocessing (lane
tracking, dye separation, baselining and SSF assignment) was done using the
ABI GeneScan software. The complete list of the markers (and their marker
intervals) can be found in appendix B.

Genotyping and manual allele calling were performed according to the proce-
dure described in Ewen et al [2000]. If a trace can not be called or is ambiguous,
measurement is repeated once before the genotype is declared to be unknown.
We have two different set of calls available. The ‘original’ calls are those based
on the first round of measurement, and the ‘final’ calls based some repeated
traces. For training and testing our algorithm, only the traces from the first
round of measurement are used, because large-scale testing is easier to do5.
Moreover, we are interested in the performance on a fresh trace data, not on
those that have been manually handpicked for repeated measurements. How-
ever, when comparing the automated and the manual calls, we use the ‘final’
calls because they are closer to the ‘truth’.

4.2.6 Assessing the performance

There are several issues that need to be considered when using the manual calls
as the ‘true’ genotypes. Firstly, some calling errors might be present in the
manual calls. This has been estimated [Ewen et al 2000] to be somewhat small
(≤ 0.2%), and should be sufficient to test a calling system that is expected
to have larger error rate. For brevity, we will use the term ‘error’ to mean
‘disagreement’. The actual error rate of the calling algorithm might be slightly
lower than the disagreement rate (it is unlikely that both calls are wrong when
they agree).

Secondly, not all traces have their genotypes available. Although some are
definitely measurement failures, others are not called because they are con-
sidered ‘ambiguous’ by the guidelines for the manual calling procedure. We

4A ‘trace’ here means a portion of an electrophoresis trace associated with a specific marker.
5We have not integrated the algorithm to the LIMS system at the time the investigation

was conducted. The ‘original’ traces are conveniently organized into folders in the filesystem.
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therefore need to distinguish between ‘definite miscalls’ (genotypes are assigned
differently) and failures to reject what was considered ambiguous by human
judgment. It is possible that some of the automated calls for these might turned
out to be correct when compared to the (unknown) true genotypes. Discard-
ing traces with unknown genotypes makes the comparison simpler, but the test
does not reflect how the automated method would perform in real situations,
where rejecting or accepting a trace is as difficult a decision as picking the best
genotypes, if not more so.

Lastly, the allele labels produced by manual calls might differ from the au-
tomated ones due to different sizing and binning schemes, although each might
be internally consistent (each allele is always given the same label across lanes).
In such cases, the automated and manual calls refer to exactly the same peak in
the chromatograms as the allelic peak, but different labels are used. These dis-
crepancies should not be considered as errors, unless the labeling discrepancies
are due to inconsistency within a binning scheme (for example, the same allele
is binned differently in different traces). The different binning schemes of the
automated and the manual calling system should be ‘normalized’ by finding a
mapping between allele labels of the the two using the allele frequency profile
(which should be very similar, with a few calling discrepancies, because they
come from the same DNA samples). This is illustrated in figure 4.5.

Comparison procedure

For each trace, manual calling produces a pair of integer allele labels (chosen
according to a binning scheme) and a pair of peak sizes estimated according
to the local Southern method. The peak sizes can be inverted back into raw
trace positions (or scan numbers). Thus, for the same trace we can see if the
automated and the manual calling procedure refer to the same peak, regardless
of the allele labels. Additionally, we are interested in assessing the ability of
the trace alignment procedure (chapter 2) to bin alleles consistently across lanes
and merge allele labels from different runs. Hence, the comparison needs to be
done at the level of allele labels.

The first step that needs to be done in comparing the automated and the
manual calls is to resolve the differences in allele labels due to labeling schemes.
This is the same problem with combining calls from multiple sources with differ-
ent sizing and binning methods, which was addressed in chapter 2 (section 2.3.6),
using dynamic programming to align allele frequency profiles. The mapping in
figure 4.5 is actually produced using the algorithm. The adjustments for most
markers are constant one or two basepair shifts, although occasionally gaps need
to be introduced. On the test set, out of 354 markers, 308 (87%) do not require
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AGRF (manual) STRAL/FA

allele1 allele2 allele1 allele2 Q-score

------------- ---------------------

315 319 314 318 1.26

? ? 318 325 5.59

325 329 324 327 2.72

319 325 318 324 2.75

325 327 324 325 4.72

315 325 314 324 2.30

315 327 314 325 2.77

315 333 314 332 1.93

327 327 325 325 2.36

327 327 325 325 3.14

325 327 324 325 3.51

325 327 324 325 1.84

325 327 324 325 4.00

327 329 325 327 1.83

325 329 324 327 2.87

327 329 325 327 3.31

327 329 325 327 2.51

327 327 325 325 3.38

319 327 318 325 3.13

315 319 314 318 1.54

311 316 321 326 331 336

311 316 321 326 331 336

Figure 4.5: Comparing allele labels from different binning schemes. This is an (ex-

treme) example of different allele labels used by the AGRF and STRAL/FA (the pro-

posed methods). The table shows some of the calls made for some traces (the rows)

from a marker data set (not all are shown). The figure below shows the histograms

of the allele labels (the top one is for AGRF calls and the bottom for STRAL/FA).

The purple lines are the appropriate mapping, which differs by 1 bp for most alleles

except for those at 327 and 329 (in the AGRF scale). The migration behaviors of the

two alleles are anomalous and the AGRF binning procedure shift them up using the

assumption that alleles in dinucleotide repeats differ by 2 bp (while STRAL does not

use this assumption by default, see chapter 2, page 59).
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a gap, 41 (11.5%) require 1 gap, and the remaining 5 (1.5%) require 2 gaps. It is
fair to question whether this adjustment procedure shifts some alleles that are
inherently different calls into the same one, thus lowering the error counts. To
address this, we require that identical calls should also match the peak locations
(with a certain tolerance, say ±0.5 bp) in addition to matching the allele labels.

After allele label alignment, one the following ‘discrepancy types’ are recorded
for each comparison:

0 Perfect match: both allele labels and peak locations agree.

1 One-allele miscall. In one allele, the peak location and label disagree;
while in the other, they match perfectly.

2 Two-allele miscall. Same as above but affecting both alleles.

3 One-allele binning disagreement: allele labels differ, but the peak locations
agree, affecting one allele.

4 Two-allele binning disagreement. Same as above, but affecting both alle-
les.

5 ‘Unknown’. Manual call is not available.

The automated method always calls, so there is no case where it explicitly
declares an observation a failure, although the quality value (the L-score) might
be very low.

To have a general assessment of the performance, we need to count the trade-
off between the number of errors and correct calls under various thresholds of
the L-score. This is done by sorting the observations according to descending
order of L-scores, and cumulatively counting the errors and hits. Rather than
looking at all cases of discrepancies listed above, it is simpler to summarize the
error types into the following:

Type A The combined counts for all type of discrepancies, including case 5
(missing manual call). This count reflects also the failure to reject traces
that are deemed unreliable by human analysts. However, some of the
automated calls might be correct when compared to the (unknown) true
genotypes.

Type B The combined counts of discrepancy type 1, 2, 3, and 4. These are
‘definite errors’.

Type C The combined counts of discrepancy type 1 and 2. Binning errors are
excluded from this type so that we can assess the trace alignment method.
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Assessment statistics

The statistics which is particular interest is the ‘error rate’:

% error = 100× number of errors
number of calls

, (4.14)

which is directly related to the measure used as error requirements by down-
stream analysis [Weeks et al 2002]6. This is computed for all of the three error
types (A, B or C).

Note that this definition of ‘error rate’ is different from that used in receiver
operating characteristic (ROC) curve where the error rate is the number of false
positives relative to the total number of negatives (which is unknown in our
case). The error rate in ROC curve decreases monotonically when the threshold
is made more stringent (because it is relative to a constant), whereas our error
rate may increase even when the acceptance threshold is increased, if miscalls
occur with good quality values (thus their frequency increases when correct calls
are thrown away).

The trade-off of using a stringent quality value requirement is a reduced
number of correct calls. We use a ‘hit rate’ measure relative to the total number
of traces, including those that fail:

% hit =
number of correct calls
total number of traces

. (4.15)

This gives us a clear idea about the yield for the whole genotyping process, but
might not be a fair indicator of the caller’s performance, because it is possible
that one particular data set contains many inherently unusable traces (such as
those due to bad DNA samples). To assess the algorithm itself, we use the hit
rate relative to what human judgment can do for the traces:

% relative hit =
number of correct calls
number of manual calls

. (4.16)

Note that for the ‘number of manual calls’, we counted only those available in
the ‘original’ genotype tables, not in the ‘final’ ones (see the last paragraph
of section 4.2.5). Thus it is possible that the relative hit rate exceeds 100%
if the algorithm can get more correct genotypes than human seeing only the
same traces. The ‘original’ calls are somewhat conservative because there is an
option to repeat measurements for ambiguous data (which might still be less
costly than making wrong calls). Nevertheless, the number of ‘original’ calls
is a rough indicator of the portion of the data that are ‘usable’ (or the total
number of ‘positives’). Thus, the relative hit is approximately similar to the
‘true positive rate’ in ROC analysis. The algorithm performance on different
data sets with varying qualities can therefore be compared more easily.

6The ‘error rate’ in PHRED quality score [Ewing and Green 1998] is also defined similarly.
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4.3 Results and discussion

4.3.1 FAL1 allele caller

The optimization was done using multiple random restarts. There are many
slightly different local optima that result in similar performance curves. The
following value was found to be the best so far for our training data set:
w = (1, 0.069919, 0.133511, 0.055029, 0.224701). We will refer to the new algo-
rithm, with these specific weights, as ‘FAL1’ caller (for ‘find allele using L-score,
version 1’).

The overall performance curve for the training set is shown in figure 4.6.
The performance of FAL1 is dramatically better than the GLSA. An error rate7

of less than 1% is achievable for up to 65% of the data (or up to 70% of the
usable data based on the relative hit rate). 90% of the data is called correctly
if we are willing to accept 4% error rate (the same level at which GLSA only
gives 10% hit).

The performance is still much less than that of human analysts, which called
91% of the data at the (estimated) error rate of ≤ 0.2%. However, if this
performance is similar for other data sets and the L-score can predict the error
rate, a hybrid calling system can be devised, where a cutoff of L ≥ 3 is used to
choose traces that are called with less than 1% error. 60% of the data can be
called automatically. Although all of the remaining 40% have to be examined,
only 5% needs to be corrected. It is easier to confirm correctly pre-assigned
genotypes than to edit them.

The relationship between the L-score and the probability of errors is illus-
trated in figure 4.7. Errors are more frequent on the left side, as the L-score
decreases. Furthermore, the errors are also associated with the actual values of
the L-score, not just with the ranking in a marker-specific way, as can be seen
from the association of the dots with the color. The color map can be used
to assist manual genotyping8. A human analyst can navigate by starting from
the boundary between the green and cyan (L = 3.0) and manually examine the
traces in the order prioritized by the L-score, from high to low (see Figure 4.8).
Cleaner traces will be encountered first and can be scanned quickly. The exam-
ination can be stopped when the L-score becomes too low (say, less than 0.5 or
so), discarding the rest of the traces without having to look at them.

7We will assume type A errors unless otherwise indicated. Note that this might be a bit

conservative.
8Of course the dots are missing in a new data set.
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Figure 4.6: The performance of FAL1 on the training set are shown by the black

solid, dashed and dotted curves (for error type A, B and C, respectively). The cutoffs

based on the L-score are shown by the dots on the curves. The horizontal dashed line

(at 96% hit) indicates the number of ‘final’ calls; while the ‘×’ at 92% is the number

of genotypes in the ‘original’ calls. The red curves are the performance of GLSA caller

(error type A and B), which are the same as the ones in figure 3.12 and reproduced

here for convenient comparison. FAL1 performs significantly better than GLSA.
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0 1 2 3 4+

N G2 G1 M E B ? panel�box�marker
93 92 92 92 0 0 1 t24�001�D17S784
93 87 87 87 0 0 6 t24�001�D17S785
93 91 91 91 0 0 2 t24�001�D17S921
93 91 89 90 1 0 2 t24�001�D17S928
93 92 92 92 0 0 1 t24�001�D17S938
93 90 86 89 1 0 3 t24�001�D17S944
93 92 92 92 0 0 1 t24�001�D18S1161
93 92 92 92 0 0 1 t24�001�D18S452
93 92 89 92 0 0 1 t24�001�D18S464
93 91 85 90 1 0 2 t24�001�D18S474
93 92 91 88 4 0 1 t24�001�D18S53
93 92 92 92 0 0 1 t24�001�D18S59
93 89 87 88 1 0 4 t24�001�D18S63
93 88 86 87 1 0 5 t24�001�D18S64
93 91 91 91 0 0 2 t24�001�D18S68
90 81 78 78 3 0 9 t24�103�D17S784
90 81 77 79 2 0 9 t24�103�D17S785
90 80 75 79 1 0 10 t24�103�D17S921
90 81 78 80 1 0 9 t24�103�D17S928
90 80 77 76 4 0 10 t24�103�D17S938
90 80 78 79 1 0 10 t24�103�D17S944
90 80 79 79 1 0 10 t24�103�D18S1161
90 81 79 78 3 0 9 t24�103�D18S452
90 81 80 80 1 0 9 t24�103�D18S464
90 78 68 71 7 0 12 t24�103�D18S474
90 81 76 79 2 0 9 t24�103�D18S53
90 81 80 80 1 0 9 t24�103�D18S59
90 81 78 78 3 0 9 t24�103�D18S63
90 75 64 71 4 0 15 t24�103�D18S64
90 81 79 79 2 0 9 t24�103�D18S68
91 88 87 88 0 0 3 t24�207�D17S784
91 86 80 79 7 0 5 t24�207�D17S785
91 88 87 87 1 0 3 t24�207�D17S921
91 87 86 85 2 0 4 t24�207�D17S928
91 88 83 85 3 0 3 t24�207�D17S938
91 83 80 82 1 0 8 t24�207�D17S944
91 88 87 88 0 0 3 t24�207�D18S1161
91 87 84 87 0 0 4 t24�207�D18S452
91 88 85 87 1 0 3 t24�207�D18S464
91 86 84 85 1 0 5 t24�207�D18S474
91 88 83 87 1 0 3 t24�207�D18S53
91 88 88 88 0 0 3 t24�207�D18S59
91 87 83 84 3 0 4 t24�207�D18S63
91 85 76 79 3 3 6 t24�207�D18S64
91 87 84 87 0 0 4 t24�207�D18S68

Figure 4.7: A diagram illustrating the relationship between the L-score and various

error types. The color map is made of small boxes each corresponding to a single

trace. Each row contains traces from the same marker, ranked according to increasing

L-score from the left to the right. The color corresponds to the L-score (the color

scale is shown at the top left corner). If a box does not contain any dot, then the

automated and the manual calls agree. White dots correspond to missing manual call

(type 5 discrepancies, see page 4.2.6), red dots to type 1 or 2 (miscalls), and blue dots

for type 3 or 4 (binning errors). Each box typically contains two dots. The top one is

comparison against the ‘original’ calls, while the bottom against the ‘final’ calls. The

numbers to the left of the map is the average L-score for the whole row (red if < 2.5).

The columns N, G2, G1, M, E, B, ? are, respectively, the number of traces, ‘final’

calls, ‘original’ calls, matches, miscalls, binning errors and unknown genotypes. Note

that only half of the training set is shown (panel 24 only).
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Figure 4.8: Trace data of the marker t24/103/D18S474 (row #67 in figure 4.7). The

blue numbers are the L-score. The black, numbered dots are the automated calls. If

a miscall occur, the true genotypes are shown by red dots. If the true genotype is

unknown (white dots in figure 4.7), two red question marks are shown. Otherwise the

calls match.
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4.3.2 Performance on the test set

Examples of ‘quality color maps’ from the test set are shown in figure 4.9 and
4.10. As in the training set, the L-score is closely associated with the occurrence
of errors. In figure 4.9, there are three sets of problematic traces (from the same
marker p16/*/D9S158) where most of the calls are wrong. Figure 4.10 is a
panel where the data quality is the worst overall, as shown by the low counts
of manual calls (numbers in column G1), with some markers discarded entirely.
In both examples, the L-scores are closely associated with the calling errors.

The performance curves on the test set are shown in figure 4.11. Overall, the
calling performance on the test set is fairly similar to that on the training set.
The curves for the test set are slightly more rounded, with a lower percentage
of hits than the training set. However, the test set contains more bad quality
traces, as indicated by its having fewer manual calls (82%) than the training
set (92%). Many of these are in panel 12 (figure 4.10), which is known to be
problematic even for human analysts (Wayne Ward, AGRF, personal commu-
nication).

Section C.2 (appendix C, page 144) shows the performance curves stratified
according to the panels, as well as the complete quality maps of the test data
set. We can see that the performance is closely related to the overall data
quality as indicated by the number of traces callable by human. Panel 09, 10,
16 and 19 are particularly good. The error rates are actually better than that of
the training set. In the other panels (particularly panel 12), the type A curves
(including ‘unknown’ discrepancies) are worse, but the type B curves (definite
errors) are not too different. This suggests that the L-score (which is calibrated
from the particular training set we chose) is better at predicting definite miscalls
than pointing out what human analysts would consider to be ‘unknowns’.

If the L-score is to be used to partition the data into those that are auto-
matically called or discarded, we need to assess its ability to predict the error
rate. Figure 4.12 shows the error and hit rate as a function of the L-score for
both data sets. In panel a, the error rate for the test is roughly similar. For
L-score cutoffs less than 3, the type A error is higher in the test set. However,
this is the range of quality that needs manual editing because the error rate is
predicted to be more than 1%. Thus the underestimation is not harmful. At
the recommended cutoff itself (L = 3), the error rate is very closely predicted.
Interestingly, for L-scores greater than 3, the test set is better. Furthermore,
increasing L-scores still correspond to a decreasing error rate in the test set, as
opposed to the flat error rate for the training set.

For type B errors the test and training results are very close. Thus, for the
good quality traces where manual calls can be made (in both training and test
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94 93 84 88 5 0 1 p16�001�D10S1651
94 93 91 93 0 0 1 p16�001�D10S1652
94 94 93 93 1 0 0 p16�001�D10S1693
94 94 93 93 1 0 0 p16�001�D10S196
94 94 90 93 1 0 0 p16�001�D10S217
94 94 87 81 13 0 0 p16�001�D10S548
94 94 92 92 2 0 0 p16�001�D10S597
94 94 84 88 6 0 0 p16�001�D11S898
94 94 91 92 2 0 0 p16�001�D11S908
94 89 63 30 53 6 5 p16�001�D9S158
94 83 83 80 3 0 11 p16�001�D9S1682
94 93 89 78 14 1 1 p16�001�D9S1817
94 94 90 92 2 0 0 p16�001�D9S1826
94 94 93 90 4 0 0 p16�001�D9S283
94 94 86 92 2 0 0 p16�001�D9S290
94 92 83 88 4 0 2 p16�095�D10S1651
94 93 90 92 1 0 1 p16�095�D10S1652
94 93 92 93 0 0 1 p16�095�D10S1693
94 93 89 88 5 0 1 p16�095�D10S196
94 90 74 78 12 0 4 p16�095�D10S217
94 89 83 72 17 0 5 p16�095�D10S548
94 93 93 93 0 0 1 p16�095�D10S597
94 94 92 90 4 0 0 p16�095�D11S898
94 91 89 91 0 0 3 p16�095�D11S908
94 93 71 31 62 0 1 p16�095�D9S158
94 89 89 86 3 0 5 p16�095�D9S1682
94 93 90 91 2 0 1 p16�095�D9S1817
94 94 90 89 5 0 0 p16�095�D9S1826
94 93 93 93 0 0 1 p16�095�D9S283
94 92 83 89 3 0 2 p16�095�D9S290
78 76 68 69 7 0 2 p16�189�D10S1651
78 77 72 74 3 0 1 p16�189�D10S1652
78 72 68 69 3 0 6 p16�189�D10S1693
78 72 70 70 2 0 6 p16�189�D10S196
78 72 57 58 14 0 6 p16�189�D10S217
78 74 64 63 11 0 4 p16�189�D10S548
78 72 71 71 1 0 6 p16�189�D10S597
78 76 65 72 4 0 2 p16�189�D11S898
78 73 58 70 3 0 5 p16�189�D11S908
78 68 48 28 40 0 10 p16�189�D9S158
78 69 69 69 0 0 9 p16�189�D9S1682
78 75 69 70 5 0 3 p16�189�D9S1817
78 77 67 70 7 0 1 p16�189�D9S1826
78 73 69 71 2 0 5 p16�189�D9S283
78 74 57 66 8 0 4 p16�189�D9S290

Figure 4.9: The quality map for panel 16 from the test set. See figure 4.7 (page 115)

for descriptions.
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94 88 82 85 3 0 6 p12�001�D7S486
94 84 33 54 30 0 10 p12�001�D7S493
94 69 36 64 5 0 25 p12�001�D7S507
94 94 94 93 1 0 0 p12�001�D7S515
94 89 88 88 1 0 5 p12�001�D7S519
94 65 61 63 2 0 29 p12�001�D7S531
94 94 0 40 54 0 0 p12�001�D7S636
94 83 61 76 7 0 11 p12�001�D7S661
94 51 16 42 9 0 43 p12�001�D7S684
94 66 39 51 15 0 28 p12�001�D7S798
94 89 88 87 2 0 5 p12�001�D8S270
94 90 87 90 0 0 4 p12�001�D8S277
94 84 59 79 5 0 10 p12�001�D8S284
94 84 79 81 3 0 10 p12�001�D8S285
94 92 12 70 20 2 2 p12�001�D8S505
94 87 69 82 5 0 7 p12�001�D8S550
94 89 69 78 11 0 5 p12�095�D7S486
94 86 54 70 15 1 8 p12�095�D7S493
94 80 34 67 10 3 14 p12�095�D7S507
94 92 90 91 1 0 2 p12�095�D7S515
94 91 89 90 1 0 3 p12�095�D7S519
94 78 63 76 2 0 16 p12�095�D7S531
94 57 0 25 32 0 37 p12�095�D7S636
94 91 55 85 6 0 3 p12�095�D7S661
94 75 39 62 13 0 19 p12�095�D7S684
94 85 51 76 9 0 9 p12�095�D7S798
94 87 81 86 1 0 7 p12�095�D8S270
94 92 92 91 1 0 2 p12�095�D8S277
94 89 69 85 4 0 5 p12�095�D8S284
94 88 50 55 28 5 6 p12�095�D8S285
94 75 20 57 18 0 19 p12�095�D8S505
94 91 71 83 8 0 3 p12�095�D8S550
94 86 76 78 8 0 8 p12�189�D7S486
94 87 50 72 15 0 7 p12�189�D7S493
94 86 49 73 13 0 8 p12�189�D7S507
94 90 89 87 3 0 4 p12�189�D7S515
94 83 82 80 3 0 11 p12�189�D7S519
94 77 55 73 4 0 17 p12�189�D7S531
94 63 6 40 23 0 31 p12�189�D7S636
94 88 72 72 15 1 6 p12�189�D7S661
94 82 39 72 10 0 12 p12�189�D7S684
94 89 69 86 3 0 5 p12�189�D7S798
94 87 84 87 0 0 7 p12�189�D8S270
94 91 87 89 2 0 3 p12�189�D8S277
94 87 59 79 8 0 7 p12�189�D8S284
94 88 62 70 15 3 6 p12�189�D8S285
94 83 51 71 12 0 11 p12�189�D8S505
94 89 65 81 8 0 5 p12�189�D8S550

Figure 4.10: The quality map for panel 12 from the test set. See figure 4.7 (page 115)

for descriptions.
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Figure 4.11: The automated calling performance on the test set (black curves) and

the training set (red curves, same as the black curves in figure 4.6). Figure description

is the same with that of figure 4.6. Note that only 82% of the test set can be called

by human (the ‘×’ mark), compared to nearly 92% of the training set. Both are fairly

similar.
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Figure 4.12: An alternative way to view the allele caller performance. The black and

red curves correspond to the test set and training set, respectively. The solid, dashed

and dotted curves corresponds to error type A, B and C. Panel a, b and c respectively

show the error, hit and relative hit rate as functions of the L-score.
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set), the L-score is associated with the same error rate. However, for bad quality
traces discarded by human callers, which are more abundant in the test set, the
L-score might underestimate the true error rate. This might be due to the lack
of examples, in the training set, of traces that should be discarded. This might
be improved by re-training the algorithm using the test set.

Type C errors are counted to assess the binning performance of the trace
alignment algorithm. The difference between the type B and C curves is the
proportion of binning errors. It is fairly low in the test set and curiously higher in
the training set. When the trace data of the training set is examined, most of the
binning errors occur in a particular marker (t05/001/D4S405, see quality map
on page 142), which is prone to cross-talk from adjacent fluorescence channels.
There are many spurious peaks shifts that are out of phase with the DNA
fragment ladder in this marker, interfering with estimation of the alignment
curves. Although the time scales are adjusted wrongly, resulting in labeling
discrepancies, the subsequent allele calling algorithm still identifies the correct
peaks based on the patterns.

Figure 4.12b shows the hit rate as a function of L-score. The two curves are
quite similar, differing by ±5%. As in figure 4.12a, the hit rate of the test set is
worst in the low range of L-score. The L-score is not expected to be an accurate
predictor of the portion of correct calls (relative to the total number of traces),
because this is largely determined by the quality of the data. The curves for
the relative hit rate (figure 4.12c) are more similar, with the rate in the test set
being slightly better overall, especially in the range of high L-scores.

We mentioned previously, based on the training set, a recommendation for
a hybrid calling system where automated calls with L ≥ 3 are accepted without
re-examination, with less than 1% error and 60% of the data correctly called.
If this is applied to the test set, slightly higher error rate is found (1% instead
of 0.8%) and 56% of the data is correctly called. The relative hit rate is similar
at nearly 70% of callable data.

Overall, the results of the test set closely resemble those of the training
set. This is remarkable considering the markers are all different and the size
of the training set is only 23% of the test set. We expect that the L-score will
behave similarly on new data sets. Further improvement might be achieved if
larger data set is used to re-calibrate the weight vector w, although it is not
clear yet how significantly. Our experience with developing the FAL1 caller
from the GLSA caller, by incrementally adding features and rules, indicated
that significant improvements required extra features, in addition to a larger
training set.

One source of common errors yet to be incorporated into the L-score is
the fluorescent dye cross-talk. Spurious peaks appear as the results of very
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strong peaks in other color channels, which saturate the detector and violate
the linearity assumption in the color separation algorithm. To get a feature
variable that detect this instance, we would need to look at the raw fluorescence
data. These are available in the same trace data file, but more investigation is
required to find the appropriate transformation (there are four variables from
all dye channels per allelic peak) to produce a feature that can be incorporated
into the Q-score formula (equation 4.3).

It is difficult to compare the performance of STRAL/FA with those of ex-
isting methods. As mentioned in chapter 1 (page 19), there are only a few
published results from other automated calling systems. Weber and Broman
[2001] reported 94% accuracy, which is similar to that of our GLSA caller (it is
not clear if they have a quality measure to subset the data). Pálsson et al [1999]
reported a test result for 6912 genotypes. Their algorithm (TA/DecodeGT) se-
lects 5806 of the as ‘good’ and 78 miscalls were found in this subset. This means
an error rate of 78/5806 = 1.34% and the rate of correct calls is 82.8%. On our
test set, the yield for the same error rate is only 62% (type A) and 75% (type B).
However, for individual panel, the yield might be better, or worse, depending
on the data quality (see section C.2, page 144). Note that the data set used by
Pálsson et al [1999] might be significantly better because problematic markers
with odd alleles had been removed from their test set. It is also not clear how
much of their data set can be called manually. If all of their traces are callable,
then the data set is very good (no missing genotypes) and our method performs
better on such data sets (see the curves for panel 09, 10, 16, 19). Furthermore,
comparing the yield at 1.3% error is not really meaningful because manual ex-
amination still needs to be done on the calls. If the errors are evenly distributed
within the ‘good’ subset, then all of them have to be examined. Their method
does not provide a single quality measure like the L-score that can be varied to
get the desired trade-off and can be used to rank the traces.

Without implying that our method is better or worse than the existing ones,
we would like to conclude by stressing that proper benchmarking can only be
done using exactly the same data set, using the same assessment criteria. Such
studies are currently difficult to conduct because of the lack of openly shared
trace data sets. We are planning to make our methods and some of the data
sets publicly available in the near future to address this issue.

4.3.3 Summary

We have developed an allele calling algorithm based on a quality score, which
also can roughly predict the error rate. Fully automated genotyping can be
performed on 55% of the data (with L ≥ 3) with less than 1% error. Manual
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examination needs to be performed on about 20-30% of the traces with lower
quality (1 < L < 3), which contain only up to 4% error. The remaining data
(with L < 1) can be discarded. The yield after combining the automated and
edited calls should be comparable to that of the manual method. The L-score
can also make the editing software easier to use by ranking the traces.

The performance above are average results on the whole test set, with traces
from different panels and runs pooled together. The statistics for individual
panels or runs show some variability. We have not yet conducted a detailed
analysis on how precisely the L-score can predict the error rate. Nor have we
investigated how much the guidelines for a hybrid system can save on costs.
We are currently still focusing on improving the calling algorithm. Under the
framework that we have established for automatic optimization of quality scores
and large-scale testing, it is likely that significant improvements can be made
in the near future.
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Chapter 5

Summary and Conclusions

5.1 Summary of the proposed method

The method is divided into three main steps: trace alignment, allelic pattern
fitting, and calling by quality values. The first two steps remove run-, marker-
and allele-specific variations, producing several feature variables that can be
treated uniformly by the calling step. Calibration using a training set can
therefore be done in a marker-independent manner. The outline of the steps is
as follows.

1. Trace alignment (chapter 2)

The objective is to normalize variations in the time domain of electrophore-
sis traces, so that the subsequent steps can treat the aligned traces from
the same marker as a multivariate data matrix.

• The input is a set of preprocessed trace data files from the same
electrophoresis run. Tracking, color separation and identification of
size-standard fragments still needs to be done by external software.

• Each marker interval is processed separately; multiple lanes are ana-
lyzed simultaneously.

• To correct for various biases, the alignment algorithm relies on the
size-standard fragments (using a 2nd order loess curve) and the pe-
riodic pattern DNA fragment ladder (using dynamic programming
alignment).

• The main output is a matrix of resampled and aligned trace data.
The alignment curves are also available.

2. Allelic pattern estimation (chapter 3)
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The objective is to compensate for marker-specific PCR and electrophore-
sis artefacts, making it possible to use the same discrimination rules for
all markers in the subsequent allele calling step.

• The input is an aligned trace data matrix.

• The expected shape of all possible alleles in marker data is modeled
parametrically.

• The model has several components, corresponding to physical pro-
cesses that occur during PCR and electrophoresis: unequal amplifi-
cation ratio, untemplated 3’ addition, polymerase slippage and elec-
trophoretic diffusion. Eight marker-specific parameters are used.

• The model parameters are estimated from the data, using a least-
squares criterion and optimized using the Nelder-Mead downhill sim-
plex method.

• The model is used to produce two features for each possible genotype:
allelic pattern fitness and deviation from heterozygote ratio.

3. Allele calling by quality values (chapter 4)

• The input is a set of features (for every possible genotype):

– Fitness between the trace data and the expected patterns

– Deviation from the expected heterozygote ratio

– Intensity of the main allelic peaks

– Sharpness of the main allelic peaks

– The amount of shift needed to align the main allelic peaks

• A quality indicator, the Q-score, is derived as a weighted sum of the
transformed features. The genotype with the lowest score is the most
likely to be the true genotype.

• The weights are optimized by maximizing the hit rate for a given
error rate, say 1%.

• The quality indicator is tuned further in a marker-specific way, using
the distribution of the Q-score of the second-best genotype. The neg-
ative log of the c.d.f. (the L-score) produces identical calls with the
Q-score, but the same quality threshold might be use across different
markers.

Implementation The core of the methods have been implemented in UNIX
(Linux) operating system, as a collection of programs and scripts written in C
and perl. Currently, the input trace files have to be in ABI sample file format,
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after preprocessing using ABI GeneScan software to remove color interference
and identify the size-standard fragment peaks. Processing data a whole run
of 96 lanes of a typical panel (15 markers) takes less than five minutes on a
Pentium II/450MHz Linux machine. GUI software for browsing and editing the
traces and genotypes are still being developed.

5.2 Results

Benchmark tests were performed on 33,003 genotypes from 24 gels (8 panels, 3
runs per panel with different individual samples), taken from the daily opera-
tions of the AGRF. Manual calls are available for up to 95% of the data (some
from repeated genotyping). Error rates of < 1% can be achieved, at a data
rejection threshold that still yields 55% correct calls. Up to 85% of the data
can be correctly called if 5% error is acceptable. The performance on the test
set is roughly the same as that of the training set, suggesting similar results for
new data sets. Furthermore, the L-score can reasonably predict the error rate,
particularly around the critical range of 1% error.

Based on the test set, we propose a partially-automated genotyping system:

• Accept all automated calls with L ≥ 3. This portion is estimated to
contain 1% error, and correct calls for around 50-60% of the data.

• Use the L-score to rank the traces (within each marker), and manually
examine and edit them in the order of decreasing L-score.

• Discard the traces with L < 1.

This procedure can be used to produce genotypes with the same yield and error
rate as the current system, but with less effort.

5.3 Future work

This project built a framework for further improvements. A mechanism for
accessing the data and to benchmark the performance of new or modified al-
gorithms has been established. This makes it easy to conduct further develop-
ments, such as:

• Calibration of the quality scores using a larger data set.

• Automatic tuning (based on a large calibration data set) of algorithm
parameters that are currently fixed, such as the parameters for smoothing
filters and dynamic programming in trace alignment, and the recursive
filter combination in the allelic pattern model.
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• More detailed examination of the wrong calls, and devising the possible
improvements. For example, most errors are made in deciding between a
homozygote and a heterozygote with similar patterns. The model of the
unequal amplification ratio might need to be refined to include a length
dependent variance.

• Implementation of a graphical user interface for browsing and editing the
calls. Because the quality values are available for all possible genotypes, it
useful to display not just the best one (the default call), but also the top
few, most likely genotypes. Often, when the best genotype is erroneous,
the true genotype is the second or the third one. Editing will be facilitated
if ranked alternatives are provided.

• Improvement of model fitting by re-optimization using partially called
data. The optimization of model parameters should be more reliable if
the true genotypes are available for a few lanes. When the automated
calls are being edited manually, the algorithm can be re-run incorporating
the corrected genotypes on a few lanes, which might automatically fix
similar errors in other lanes.

• Marker-specific parameters. Although the main philosophy of the ap-
proach is marker independent recognition, having marker-specific param-
eters (possibly implemented as “prior” parameters) might improve the
performance. Unlike some other existing systems based on libraries of
whole allelic patterns, it might be sufficient to store a handful of marker-
specific parameters and use the fully adaptive approach if such parameters
are not available.

5.4 Concluding remarks

A prototype of automated allele calling system has been developed. Unlike
other automated allele calling methods, our algorithm is marker-independent
and uses a predictive quality value. Although the performance is still not equal
to that of human analysts, it may significantly facilitate manual allele calling.

This project highlights the power of generative models in adaptive recog-
nition systems. The model compresses the systematic variability in data from
heterogeneous sources (markers) into a handful of parameters that can be reli-
ably estimated from the data itself. The extensive repository of manually called
trace data, now unlocked by this project, opens the door for a more challenging
problem: automatic development of the calling algorithm itself, by searching
the space of possible models and analysis steps.
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Appendix A

Recursive Linear Filters

Filtering in the frequency domain are required by various parts of the allele call-
ing system, both for smoothing (low-pass filtering) and enhancing or sharpening
features (band-pass filtering). This is equivalent to applying a time-invariant
linear operator (or transforming by a Toeplitz matrix). Such operation is also
known as convolution.

Fast Fourier Transform can be used to perform the task with O(n log n)
complexity, instead of O(n2) required by naive matrix multiplication. Faster
computation, in O(n) might be achieved, for certain types of convolution kernels,
using recursive or infinite impulse response filter (Antoniou [1993], Press et al
[1992, pp558–564]). If the desired filter response can be described by the rational
transfer function:

H(z) =

M∑
i=0

ciz
i

1−
N∑
j=1

djz
j

, (A.1)

then the filtering can be performed by computing:

yt =
M∑
i=0

cixt−i +
N∑
j=1

djyt−j (A.2)

Only small number of coefficients (fewer arithmetic operations) are needed to
obtain filters with sharp change in the frequency response. The filtering can
also be done “in-place”, overwriting the input by the output, requiring only a
short queue. The disadvantage is a more complicated design procedure to find
a rational polynomial that fit the required response. Additionally the phase
response is non-linear, which distorts the symmetry of the peaks in the signal
and changes their locations.
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In chromatographic analysis, the location of the peaks are important and
needs to be preserved. To obtain zero-phase response (which preserve the loca-
tions of the peaks), a cascade of causal (moving forward in time) and anti-causal
(moving backward in time) filtering may be used. This is possible for our prob-
lem, where the input signals are available in memory and the data points can
be accessed in both directions.

We use a handful of building blocks that can be cascaded to achieve sharper
frequency response. For smoothing, the simplest is the exponential filter:

yt = axt + (a− 1)yt−1 , 0 ≤ a ≤ 1. (A.3)

When forward and backward filters are combined, a symmetric impulse response
is obtained. Cascading several forward-backward pairs produces a more rounded
impulse response that tend to a Gaussian shape as the “order” of the cascade is
increased. This filter is used for smoothing alignment scores and paths (chap-
ter 2). The non-negative impulse response (convolution kernel) is also useful
for modeling chromatographic spread function (chapter 3). This is not really
“filtering” in the usual sense, but a convenient way to construct easily pa-
rameterized shapes as basis vectors in linear least-squares approximations. An
extension to the time-invariant exponential filter is the time-varying filter where
the coefficient a changes smoothly and monotonically with time, which is used
in modeling the slippage patterns that depend on the allelic length (detailed in
chapter 3).

Other building blocks are one-pole highpass and lowpass filters, with the
transfer functions:

H(z) =
1 + a

2
(z − 1)
(z − a)

(highpass) (A.4)

and

H(z) =
1− a

2
(z + 1)
(z − a)

(lowpass) (A.5)

which can be realized by:

yt =
1 + a

2
(xt − xt−1 + ayt−1) (highpass)

yt =
1− a

2
(xt + xt−1 + ayt−1) (lowpass)

(A.6)

The two can be combined to produce a bandpass filter. Sharper frequency
response (narrow band in the Fourier domain) can be obtained by cascading
the filters.

A more complex filter that we use is a Butterworth (or maxflat) filter for
highlighting the 1 bp periodicity prior to trace alignment (chapter 2). Any
textbook on digital signal processing, e.g. Antoniou [1993], can be consulted for
designing Butterworth filters.
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Appendix B

Panels of the Data Set

The markers are a subset of the ABI Linkage Mapping version 2 (medium density
genome scan set). 10 panels were selected. Two were used for the training set,
while the rest were used for testing. The two tables below list the markers and
the intervals. The size ranges are slightly larger than those specified in ABI
Panel Guide. Fluorescent dye 1, 2, 3 are 6-FAM, HEX and NED, respectively.

Table B.1: Markers used in the training set to optimize the weights w. 29 distinct

markers are used, each comprising three runs of different individuals. The total number

of traces is 7,792.

panel 5

marker dye size range

D4S392 1 79 119

D3S1311 1 132 165

D3S1565 1 165 203

D4S406 1 241 277

D4S1575 1 287 315

D3S1271 2 83 113

D3S3681 2 119 175

D4S414 2 230 258

D4S405 2 279 317

D3S1614 3 95 136

D4S1534 3 140 177

D3S1263 3 185 225

D3S1285 3 233 261

D4S1597 3 273 309

panel 24

marker dye size range

D17S938 1 235 265

D18S464 1 300 325

D18S474 1 120 155

D18S53 1 155 190

D17S784 2 220 250

D17S921 2 190 220

D18S59 2 150 180

D18S63 2 75 120

D18S64 2 305 350

D17S785 3 165 200

D17S928 3 70 115

D17S944 3 310 345

D18S1161 3 215 250

D18S452 3 125 155

D18S68 3 265 300
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Table B.2: 118 markers in 8 panels were used for testing. Each panel has three runs

of different individuals, totaling 33,003 traces.

panel 8
marker dye size range
D5S407 1 85 120
D6S289 1 158 190
D6S1610 1 199 223
D6S1581 1 256 280
D6S422 1 295 327
D5S644 2 81 121
D6S281 2 131 161
D6S262 2 166 196
D5S424 2 205 242
D5S419 2 253 295
D5S433 3 64 104
D5S422 3 113 145
D5S406 3 163 201
D5S400 3 216 248
D6S309 3 302 338

panel 9
marker dye size range
D6S264 1 108 140
D6S1574 1 150 181
D6S276 1 200 242
D5S408 1 248 294
D6S308 1 323 361
D6S287 2 105 149
D6S292 2 153 185
D6S434 2 201 255
D5S426 2 274 308
D5S1981 3 116 136
D6S257 3 165 203
D6S446 3 217 239
D5S641 3 296 346

panel 10
marker dye size range
D5S2027 1 175 211
D5S436 1 230 267
D6S460 1 275 310
D5S410 1 327 359
D6S462 2 103 129
D5S2115 2 141 190
D5S418 2 207 237
D5S428 2 243 271
D5S630 2 275 380
D6S470 3 120 155
D6S441 3 161 205
D5S471 3 236 266
D5S416 3 284 306
D5S647 3 323 373

panel 11
marker dye size range
D7S484 1 97 125
D8S264 1 130 169
D8S260 1 190 226
D7S517 1 242 270
D8S1784 1 275 303
D7S2465 1 316 350
D8S549 2 73 93
D7S530 2 104 132
D8S258 2 141 165
D7S669 2 171 203
D8S272 2 210 270
D7S502 2 286 316
D7S630 2 323 361
D7S510 3 80 106
D7S640 3 110 160
D7S513 3 167 207
D8S514 3 211 241
D7S657 3 243 279
D7S516 3 303 333
D8S1771 3 340 374

panel 12
marker dye size range
D7S507 1 80 120
D7S515 1 135 211
D7S486 1 221 245
D7S519 1 255 293
D7S661 1 300 344
D7S798 2 71 103
D8S505 2 109 133
D8S277 2 149 193
D7S493 2 202 244
D8S284 2 270 314
D7S684 2 339 371
D8S270 3 102 128
D7S636 3 136 182
D8S550 3 186 226
D7S531 3 276 305
D8S285 3 310 338

panel 16
marker dye size range
D10S217 1 95 129
D11S898 1 139 171
D10S548 1 181 207
D9S1826 1 210 238
D9S290 1 241 273
D9S1817 1 278 322
D9S158 1 328 362
D10S196 2 104 124
D9S1682 2 147 167
D11S908 2 170 196
D10S1693 2 200 236
D10S597 2 273 303
D9S283 3 89 125
D10S1651 3 205 237
D10S1652 3 268 304

panel 19
marker dye size range
D13S158 1 116 144
D13S159 1 152 204
D13S173 1 232 262
D12S364 1 295 333
D13S265 2 88 136
D12S352 2 151 181
D12S326 2 205 241
D12S310 2 243 261
D13S153 3 89 131
D13S171 3 174 212
D12S324 3 233 265

panel 20
marker dye size range
D14S292 1 80 110
D14S275 1 140 169
D14S258 1 193 223
D14S280 1 238 268
D14S70 2 98 124
D14S283 2 127 167
D14S63 2 175 203
D14S985 2 235 263
D14S74 2 296 330
D14S65 3 124 166
D14S288 3 190 225
D14S276 3 236 260
D14S261 3 271 313
D14S68 3 316 356
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Appendix C

Complete Results

C.1 The Training Set

C.1.1 Panel-specific performance curves

The performance curve for each panel are shown below. The figure description
is the same with that of figure 4.11 (page 120). The red curves are for the whole
training set.
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C.1.2 Quality maps

The quality maps and the discrepancies for the training sets are shown below.
The figure description is the same as that of figure 4.7 (page 115).
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Panel 05 (training set)

0 10 20 30 40 50 60 70 80 90
Rank based on L-score

# aveL

1 4.2

2 8.2

3 10.3

4 6.0

5 4.7

6 2.5

7 3.5

8 5.7

9 12.3

10 4.3

11 4.8

12 + 1.0

13 4.4

14 + 6.0

15 4.0

16 5.2

17 5.0

18 5.9

19 2.2

20 0.9

21 3.1

22 5.9

23 5.2

24 2.6

25 3.9

26 + 0.9

27 4.6

28 + 2.8

29 4.1

30 9.3

31 5.6

32 5.6

33 2.9

34 1.4

35 2.8

36 4.8

37 6.1

38 2.1

39 5.1

40 + 1.1

41 2.9

42 + 2.9

0 1 2 3 4+

N G2 G1 M E B ? panel�box�marker
91 91 88 91 0 0 0 t05�001�D3S1263
91 91 90 91 0 0 0 t05�001�D3S1271
91 91 88 90 1 0 0 t05�001�D3S1285
91 91 89 90 1 0 0 t05�001�D3S1311
91 91 91 91 0 0 0 t05�001�D3S1565
91 91 89 90 1 0 0 t05�001�D3S1614
91 91 88 82 9 0 0 t05�001�D3S3681
91 91 91 91 0 0 0 t05�001�D4S1534
91 91 88 90 1 0 0 t05�001�D4S1575
91 91 89 89 2 0 0 t05�001�D4S1597
91 84 84 84 0 0 7 t05�001�D4S392
91 89 62 11 30 48 2 t05�001�D4S405
91 91 90 91 0 0 0 t05�001�D4S406
91 91 88 89 2 0 0 t05�001�D4S414
84 84 83 82 2 0 0 t05�103�D3S1263
84 84 84 84 0 0 0 t05�103�D3S1271
84 84 77 83 1 0 0 t05�103�D3S1285
84 84 83 84 0 0 0 t05�103�D3S1311
84 84 84 83 1 0 0 t05�103�D3S1565
84 84 73 72 12 0 0 t05�103�D3S1614
84 81 80 81 0 0 3 t05�103�D3S3681
84 84 79 82 2 0 0 t05�103�D4S1534
84 83 82 82 1 0 1 t05�103�D4S1575
84 83 71 82 1 0 1 t05�103�D4S1597
84 82 82 82 0 0 2 t05�103�D4S392
84 80 34 31 44 5 4 t05�103�D4S405
84 83 78 82 1 0 1 t05�103�D4S406
84 82 68 68 11 3 2 t05�103�D4S414
88 87 81 85 2 0 1 t05�207�D3S1263
88 87 87 87 0 0 1 t05�207�D3S1271
88 87 83 84 3 0 1 t05�207�D3S1285
88 88 82 87 1 0 0 t05�207�D3S1311
88 83 79 83 0 0 5 t05�207�D3S1565
88 87 70 72 15 0 1 t05�207�D3S1614
88 88 76 80 8 0 0 t05�207�D3S3681
88 88 86 88 0 0 0 t05�207�D4S1534
88 87 75 77 10 0 1 t05�207�D4S1575
88 87 75 77 9 1 1 t05�207�D4S1597
88 83 83 83 0 0 5 t05�207�D4S392
88 75 52 43 23 9 13 t05�207�D4S405
88 85 78 81 4 0 3 t05�207�D4S406
88 85 72 79 5 1 3 t05�207�D4S414
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Panel 24 (training set)

0 10 20 30 40 50 60 70 80 90
Rank based on L-score

# aveL

43 4.9

44 4.1

45 + 7.0

46 2.5

47 3.4

48 2.5

49 4.0

50 6.1

51 2.2

52 4.5

53 4.2

54 7.6

55 1.4

56 2.0

57 4.4

58 4.8

59 5.2

60 + 6.9

61 3.1

62 3.8

63 3.3

64 4.7

65 4.6

66 7.1

67 2.9

68 5.5

69 5.7

70 1.3

71 2.0

72 3.7

73 4.7

74 3.6

75 + 8.2

76 2.9

77 3.9

78 2.3

79 3.8

80 5.7

81 3.2

82 4.7

83 4.8

84 5.2

85 2.0

86 + 2.0

87 4.1

0 1 2 3 4+

N G2 G1 M E B ? panel�box�marker
93 92 92 92 0 0 1 t24�001�D17S784
93 87 87 87 0 0 6 t24�001�D17S785
93 91 91 91 0 0 2 t24�001�D17S921
93 91 89 90 1 0 2 t24�001�D17S928
93 92 92 92 0 0 1 t24�001�D17S938
93 90 86 89 1 0 3 t24�001�D17S944
93 92 92 92 0 0 1 t24�001�D18S1161
93 92 92 92 0 0 1 t24�001�D18S452
93 92 89 92 0 0 1 t24�001�D18S464
93 91 85 90 1 0 2 t24�001�D18S474
93 92 91 88 4 0 1 t24�001�D18S53
93 92 92 92 0 0 1 t24�001�D18S59
93 89 87 88 1 0 4 t24�001�D18S63
93 88 86 87 1 0 5 t24�001�D18S64
93 91 91 91 0 0 2 t24�001�D18S68
90 81 78 78 3 0 9 t24�103�D17S784
90 81 77 79 2 0 9 t24�103�D17S785
90 80 75 79 1 0 10 t24�103�D17S921
90 81 78 80 1 0 9 t24�103�D17S928
90 80 77 76 4 0 10 t24�103�D17S938
90 80 78 79 1 0 10 t24�103�D17S944
90 80 79 79 1 0 10 t24�103�D18S1161
90 81 79 78 3 0 9 t24�103�D18S452
90 81 80 80 1 0 9 t24�103�D18S464
90 78 68 71 7 0 12 t24�103�D18S474
90 81 76 79 2 0 9 t24�103�D18S53
90 81 80 80 1 0 9 t24�103�D18S59
90 81 78 78 3 0 9 t24�103�D18S63
90 75 64 71 4 0 15 t24�103�D18S64
90 81 79 79 2 0 9 t24�103�D18S68
91 88 87 88 0 0 3 t24�207�D17S784
91 86 80 79 7 0 5 t24�207�D17S785
91 88 87 87 1 0 3 t24�207�D17S921
91 87 86 85 2 0 4 t24�207�D17S928
91 88 83 85 3 0 3 t24�207�D17S938
91 83 80 82 1 0 8 t24�207�D17S944
91 88 87 88 0 0 3 t24�207�D18S1161
91 87 84 87 0 0 4 t24�207�D18S452
91 88 85 87 1 0 3 t24�207�D18S464
91 86 84 85 1 0 5 t24�207�D18S474
91 88 83 87 1 0 3 t24�207�D18S53
91 88 88 88 0 0 3 t24�207�D18S59
91 87 83 84 3 0 4 t24�207�D18S63
91 85 76 79 3 3 6 t24�207�D18S64
91 87 84 87 0 0 4 t24�207�D18S68

143



C.2 The Test Set

C.2.1 Panel-specific performance curves

The performance curve for each panel are shown below. The figure description
is the same with that of figure 4.11 (page 120). The red curves are for the
training set.
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C.2.2 Quality maps

The quality maps and the discrepancies for the training sets are shown below.
The figure description is the same as that of figure 4.7 (page 115).

145



Panel 08 (test set)

0 10 20 30 40 50 60 70 80 90
Rank based on L-score

# aveL

88 3.2

89 2.6

90 4.3

91 5.1

92 2.0

93 8.0

94 2.1

95 3.1

96 8.9

97 7.6

98 + 2.1

99 1.5

100 9.4

101 5.2

102 2.0

103 4.4

104 3.5

105 3.9

106 6.2

107 3.2

108 5.9

109 2.5

110 3.9

111 10.1

112 6.4

113 + 2.3

114 2.1

115 9.9

116 4.2

117 1.3

118 3.5

119 5.7

120 2.5

121 3.2

122 2.5

123 5.9

124 2.8

125 4.1

126 10.8

127 5.2

128 + 2.4

129 4.4

130 9.9

131 6.7

132 2.0

0 1 2 3 4+

N G2 G1 M E B ? panel�box�marker
94 88 79 85 3 0 6 p08�001�D5S400
94 91 58 79 12 0 3 p08�001�D5S406
94 91 88 85 6 0 3 p08�001�D5S407
94 93 90 93 0 0 1 p08�001�D5S419
94 94 49 83 10 1 0 p08�001�D5S422
94 94 91 94 0 0 0 p08�001�D5S424
94 85 81 84 1 0 9 p08�001�D5S433
94 90 85 88 2 0 4 p08�001�D5S644
94 94 89 92 2 0 0 p08�001�D6S1581
94 90 85 89 1 0 4 p08�001�D6S1610
94 86 56 78 8 0 8 p08�001�D6S262
94 85 23 65 20 0 9 p08�001�D6S281
94 93 93 92 1 0 1 p08�001�D6S289
94 84 70 82 2 0 10 p08�001�D6S309
94 92 92 88 4 0 2 p08�001�D6S422
94 87 84 87 0 0 7 p08�095�D5S400
94 91 66 81 10 0 3 p08�095�D5S406
94 90 85 80 10 0 4 p08�095�D5S407
94 93 90 93 0 0 1 p08�095�D5S419
94 94 55 83 11 0 0 p08�095�D5S422
94 92 89 92 0 0 2 p08�095�D5S424
94 90 69 87 3 0 4 p08�095�D5S433
94 93 91 92 1 0 1 p08�095�D5S644
94 94 93 94 0 0 0 p08�095�D6S1581
94 93 90 92 1 0 1 p08�095�D6S1610
94 88 55 81 7 0 6 p08�095�D6S262
94 83 27 54 29 0 11 p08�095�D6S281
94 92 91 92 0 0 2 p08�095�D6S289
94 88 80 86 2 0 6 p08�095�D6S309
94 87 87 84 3 0 7 p08�095�D6S422
94 89 89 89 0 0 5 p08�189�D5S400
94 90 87 89 1 0 4 p08�189�D5S406
94 90 82 83 7 0 4 p08�189�D5S407
94 89 86 88 1 0 5 p08�189�D5S419
94 92 76 87 5 0 2 p08�189�D5S422
94 90 88 90 0 0 4 p08�189�D5S424
94 83 66 81 2 0 11 p08�189�D5S433
94 86 79 86 0 0 8 p08�189�D5S644
94 91 89 90 1 0 3 p08�189�D6S1581
94 89 85 89 0 0 5 p08�189�D6S1610
94 81 51 78 3 0 13 p08�189�D6S262
94 85 29 73 12 0 9 p08�189�D6S281
94 92 89 91 1 0 2 p08�189�D6S289
94 86 82 83 3 0 8 p08�189�D6S309
94 83 80 81 2 0 11 p08�189�D6S422
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Panel 09 (test set)

0 10 20 30 40 50 60 70 80 90
Rank based on L-score

# aveL

133 6.5

134 7.7

135 5.1

136 2.4

137 8.8

138 3.5

139 7.1

140 6.3

141 5.9

142 1.4

143 4.1

144 3.0

145 9.2

146 1.4

147 3.4

148 + 2.2

149 1.9

150 2.9

151 2.0

152 4.1

153 + 1.0

154 6.9

155 3.4

156 1.9

157 3.5

158 3.7

159 4.6

160 4.4

161 6.5

162 1.8

163 7.5

164 1.6

165 8.4

166 2.4

167 5.8

168 2.3

169 2.4

170 4.4

171 9.0

0 1 2 3 4+

N G2 G1 M E B ? panel�box�marker
94 94 92 90 4 0 0 p09�001�D5S1981
94 94 91 93 1 0 0 p09�001�D5S408
94 94 83 91 3 0 0 p09�001�D5S426
94 79 62 78 1 0 15 p09�001�D5S641
94 94 91 93 1 0 0 p09�001�D6S1574
94 93 90 91 2 0 1 p09�001�D6S257
94 94 93 93 1 0 0 p09�001�D6S264
94 94 93 94 0 0 0 p09�001�D6S276
94 94 90 94 0 0 0 p09�001�D6S287
94 93 63 83 10 0 1 p09�001�D6S292
94 92 89 92 0 0 2 p09�001�D6S308
94 93 70 81 12 0 1 p09�001�D6S434
94 94 89 93 1 0 0 p09�001�D6S446
94 94 92 86 8 0 0 p09�095�D5S1981
94 94 91 92 2 0 0 p09�095�D5S408
94 90 80 78 10 2 4 p09�095�D5S426
94 91 84 81 10 0 3 p09�095�D5S641
94 94 94 94 0 0 0 p09�095�D6S1574
94 94 89 81 13 0 0 p09�095�D6S257
94 94 86 92 2 0 0 p09�095�D6S264
94 92 89 76 16 0 2 p09�095�D6S276
94 94 94 94 0 0 0 p09�095�D6S287
94 90 87 85 5 0 4 p09�095�D6S292
94 93 84 83 10 0 1 p09�095�D6S308
94 93 89 91 2 0 1 p09�095�D6S434
94 94 89 90 4 0 0 p09�095�D6S446
94 92 88 88 4 0 2 p09�189�D5S1981
94 91 87 90 1 0 3 p09�189�D5S408
94 90 88 89 1 0 4 p09�189�D5S426
94 84 74 80 3 1 10 p09�189�D5S641
94 90 90 90 0 0 4 p09�189�D6S1574
94 89 79 74 15 0 5 p09�189�D6S257
94 91 89 91 0 0 3 p09�189�D6S264
94 89 87 87 2 0 5 p09�189�D6S276
94 91 88 91 0 0 3 p09�189�D6S287
94 89 75 80 9 0 5 p09�189�D6S292
94 93 87 88 5 0 1 p09�189�D6S308
94 87 78 81 6 0 7 p09�189�D6S434
94 93 84 90 3 0 1 p09�189�D6S446
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Panel 10 (test set)

0 10 20 30 40 50 60 70 80 90
Rank based on L-score

# aveL

172 8.4

173 3.0

174 2.5

175 4.7

176 4.7

177 6.6

178 6.4

179 9.9

180 + 1.6

181 4.5

182 2.9

183 4.8

184 2.6

185 7.8

186 12.2

187 5.0

188 5.8

189 4.0

190 6.0

191 4.4

192 6.1

193 10.5

194 + 1.4

195 3.0

196 3.9

197 3.0

198 4.1

199 9.7

200 7.5

201 2.3

202 3.5

203 1.8

204 5.7

205 6.7

206 5.4

207 4.7

208 + 2.6

209 1.4

210 1.8

211 3.7

212 3.8

213 13.3

0 1 2 3 4+

N G2 G1 M E B ? panel�box�marker
94 94 94 94 0 0 0 p10�001�D5S2027
94 94 93 91 3 0 0 p10�001�D5S2115
94 94 92 93 1 0 0 p10�001�D5S410
94 94 91 89 5 0 0 p10�001�D5S416
94 94 83 88 4 2 0 p10�001�D5S418
94 93 91 90 3 0 1 p10�001�D5S428
94 94 92 92 2 0 0 p10�001�D5S436
94 94 92 91 3 0 0 p10�001�D5S471
94 93 87 77 15 1 1 p10�001�D5S630
94 93 86 88 1 4 1 p10�001�D5S647
94 94 71 78 16 0 0 p10�001�D6S441
94 94 94 94 0 0 0 p10�001�D6S460
94 94 94 94 0 0 0 p10�001�D6S462
94 94 93 94 0 0 0 p10�001�D6S470
94 93 93 93 0 0 1 p10�095�D5S2027
94 94 93 91 3 0 0 p10�095�D5S2115
94 93 93 93 0 0 1 p10�095�D5S410
94 92 90 89 3 0 2 p10�095�D5S416
94 94 91 94 0 0 0 p10�095�D5S418
94 93 91 93 0 0 1 p10�095�D5S428
94 94 94 94 0 0 0 p10�095�D5S436
94 93 92 90 3 0 1 p10�095�D5S471
94 88 79 80 7 1 6 p10�095�D5S630
94 93 81 91 2 0 1 p10�095�D5S647
94 93 83 91 2 0 1 p10�095�D6S441
94 93 93 93 0 0 1 p10�095�D6S460
94 93 89 93 0 0 1 p10�095�D6S462
94 94 93 94 0 0 0 p10�095�D6S470
94 91 84 85 6 0 3 p10�189�D5S2027
94 91 88 89 2 0 3 p10�189�D5S2115
94 88 86 83 5 0 6 p10�189�D5S410
94 90 69 70 19 1 4 p10�189�D5S416
94 90 76 84 6 0 4 p10�189�D5S418
94 89 86 86 3 0 5 p10�189�D5S428
94 88 87 87 1 0 6 p10�189�D5S436
94 88 81 84 4 0 6 p10�189�D5S471
94 86 66 70 14 2 8 p10�189�D5S630
94 88 54 70 16 2 6 p10�189�D5S647
94 89 63 74 14 1 5 p10�189�D6S441
94 88 84 82 6 0 6 p10�189�D6S460
94 91 86 83 8 0 3 p10�189�D6S462
94 90 89 90 0 0 4 p10�189�D6S470
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Panel 11 (test set)

0 10 20 30 40 50 60 70 80 90
Rank based on L-score

# aveL

214 + 2.9

215 3.2

216 + 1.7

217 6.0

218 8.4

219 4.1

220 5.4

221 5.1

222 2.0

223 4.5

224 4.0

225 4.6

226 2.3

227 6.9

228 8.6

229 3.8

230 3.8

231 5.7

232 11.0

233 1.3

234 + 2.1

235 5.9

236 0.9

237 4.0

238 3.8

239 4.6

240 6.3

241 3.0

242 1.8

243 3.5

244 3.3

245 4.8

246 2.2

247 7.3

248 6.2

249 5.7

250 4.2

251 4.1

252 7.7

253 1.1

254 + 1.9

255 2.8

256 + 0.9

257 3.2

258 2.7

259 4.0

260 5.5

261 2.0

262 1.1

263 1.2

264 3.2

265 3.4

266 0.9

267 8.8

268 4.4

269 4.8

270 3.7

271 5.6

272 6.6

273 1.3

0 1 2 3 4+

N G2 G1 M E B ? panel�box�marker
94 72 39 56 16 0 22 p11�001�D7S2465
94 93 77 88 5 0 1 p11�001�D7S484
94 72 32 67 5 0 22 p11�001�D7S502
94 90 88 89 1 0 4 p11�001�D7S510
94 90 82 90 0 0 4 p11�001�D7S513
94 93 87 91 2 0 1 p11�001�D7S516
94 94 89 91 3 0 0 p11�001�D7S517
94 89 88 88 1 0 5 p11�001�D7S530
94 89 49 74 15 0 5 p11�001�D7S630
94 91 91 91 0 0 3 p11�001�D7S640
94 89 73 86 3 0 5 p11�001�D7S657
94 94 78 92 2 0 0 p11�001�D7S669
94 83 76 80 3 0 11 p11�001�D8S1771
94 94 88 93 1 0 0 p11�001�D8S1784
94 94 83 94 0 0 0 p11�001�D8S258
94 94 91 92 2 0 0 p11�001�D8S260
94 94 89 93 1 0 0 p11�001�D8S264
94 91 90 91 0 0 3 p11�001�D8S272
94 94 89 92 2 0 0 p11�001�D8S514
94 80 5 45 28 7 14 p11�001�D8S549
94 75 29 53 21 1 19 p11�095�D7S2465
94 93 92 93 0 0 1 p11�095�D7S484
94 79 23 62 17 0 15 p11�095�D7S502
94 89 85 87 2 0 5 p11�095�D7S510
94 89 76 89 0 0 5 p11�095�D7S513
94 90 77 88 2 0 4 p11�095�D7S516
94 94 92 90 4 0 0 p11�095�D7S517
94 87 81 87 0 0 7 p11�095�D7S530
94 92 45 72 20 0 2 p11�095�D7S630
94 80 79 80 0 0 14 p11�095�D7S640
94 87 56 81 6 0 7 p11�095�D7S657
94 93 77 92 1 0 1 p11�095�D7S669
94 85 69 80 4 1 9 p11�095�D8S1771
94 92 89 91 1 0 2 p11�095�D8S1784
94 93 83 90 3 0 1 p11�095�D8S258
94 92 88 91 1 0 2 p11�095�D8S260
94 93 90 91 2 0 1 p11�095�D8S264
94 87 78 86 1 0 7 p11�095�D8S272
94 92 86 90 2 0 2 p11�095�D8S514
94 88 3 11 47 30 6 p11�095�D8S549
94 82 27 67 14 1 12 p11�189�D7S2465
94 90 67 80 10 0 4 p11�189�D7S484
94 84 0 45 32 7 10 p11�189�D7S502
94 86 67 83 3 0 8 p11�189�D7S510
94 89 58 88 1 0 5 p11�189�D7S513
94 86 72 84 2 0 8 p11�189�D7S516
94 90 83 85 5 0 4 p11�189�D7S517
94 84 54 81 3 0 10 p11�189�D7S530
94 79 34 59 20 0 15 p11�189�D7S630
94 72 61 68 2 2 22 p11�189�D7S640
94 88 69 84 4 0 6 p11�189�D7S657
94 89 66 83 6 0 5 p11�189�D7S669
94 83 38 66 17 0 11 p11�189�D8S1771
94 92 87 88 4 0 2 p11�189�D8S1784
94 90 66 86 4 0 4 p11�189�D8S258
94 90 83 89 1 0 4 p11�189�D8S260
94 91 82 86 5 0 3 p11�189�D8S264
94 90 81 89 1 0 4 p11�189�D8S272
94 87 67 84 3 0 7 p11�189�D8S514
94 83 8 11 32 40 11 p11�189�D8S549
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Panel 12 (test set)

0 10 20 30 40 50 60 70 80 90
Rank based on L-score

# aveL

274 + 3.9

275 1.2

276 1.6

277 + 2.2

278 2.5

279 3.1

280 0.4

281 + 2.8

282 1.0

283 1.4

284 2.3

285 2.2

286 + 2.4

287 + 1.8

288 1.2

289 3.2

290 + 3.1

291 1.6

292 1.4

293 3.0

294 3.1

295 3.3

296 + 0.4

297 + 3.0

298 + 1.3

299 1.8

300 3.2

301 4.2

302 2.4

303 + 0.9

304 1.3

305 2.8

306 + 2.5

307 1.7

308 + 1.3

309 + 3.8

310 3.1

311 2.7

312 0.6

313 2.2

314 2.0

315 2.9

316 3.4

317 2.9

318 2.6

319 + 1.3

320 + 1.8

321 2.4

0 1 2 3 4+

N G2 G1 M E B ? panel�box�marker
94 88 82 85 3 0 6 p12�001�D7S486
94 84 33 54 30 0 10 p12�001�D7S493
94 69 36 64 5 0 25 p12�001�D7S507
94 94 94 93 1 0 0 p12�001�D7S515
94 89 88 88 1 0 5 p12�001�D7S519
94 65 61 63 2 0 29 p12�001�D7S531
94 94 0 40 54 0 0 p12�001�D7S636
94 83 61 76 7 0 11 p12�001�D7S661
94 51 16 42 9 0 43 p12�001�D7S684
94 66 39 51 15 0 28 p12�001�D7S798
94 89 88 87 2 0 5 p12�001�D8S270
94 90 87 90 0 0 4 p12�001�D8S277
94 84 59 79 5 0 10 p12�001�D8S284
94 84 79 81 3 0 10 p12�001�D8S285
94 92 12 70 20 2 2 p12�001�D8S505
94 87 69 82 5 0 7 p12�001�D8S550
94 89 69 78 11 0 5 p12�095�D7S486
94 86 54 70 15 1 8 p12�095�D7S493
94 80 34 67 10 3 14 p12�095�D7S507
94 92 90 91 1 0 2 p12�095�D7S515
94 91 89 90 1 0 3 p12�095�D7S519
94 78 63 76 2 0 16 p12�095�D7S531
94 57 0 25 32 0 37 p12�095�D7S636
94 91 55 85 6 0 3 p12�095�D7S661
94 75 39 62 13 0 19 p12�095�D7S684
94 85 51 76 9 0 9 p12�095�D7S798
94 87 81 86 1 0 7 p12�095�D8S270
94 92 92 91 1 0 2 p12�095�D8S277
94 89 69 85 4 0 5 p12�095�D8S284
94 88 50 55 28 5 6 p12�095�D8S285
94 75 20 57 18 0 19 p12�095�D8S505
94 91 71 83 8 0 3 p12�095�D8S550
94 86 76 78 8 0 8 p12�189�D7S486
94 87 50 72 15 0 7 p12�189�D7S493
94 86 49 73 13 0 8 p12�189�D7S507
94 90 89 87 3 0 4 p12�189�D7S515
94 83 82 80 3 0 11 p12�189�D7S519
94 77 55 73 4 0 17 p12�189�D7S531
94 63 6 40 23 0 31 p12�189�D7S636
94 88 72 72 15 1 6 p12�189�D7S661
94 82 39 72 10 0 12 p12�189�D7S684
94 89 69 86 3 0 5 p12�189�D7S798
94 87 84 87 0 0 7 p12�189�D8S270
94 91 87 89 2 0 3 p12�189�D8S277
94 87 59 79 8 0 7 p12�189�D8S284
94 88 62 70 15 3 6 p12�189�D8S285
94 83 51 71 12 0 11 p12�189�D8S505
94 89 65 81 8 0 5 p12�189�D8S550
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Panel 16 (test set)

0 10 20 30 40 50 60 70 80 90
Rank based on L-score

# aveL

322 4.5

323 3.1

324 4.4

325 5.8

326 2.8

327 3.9

328 6.3

329 7.7

330 5.9

331 0.9

332 2.5

333 2.0

334 9.3

335 6.8

336 8.6

337 4.8

338 4.2

339 5.3

340 6.6

341 1.2

342 4.1

343 8.1

344 8.2

345 6.5

346 1.1

347 4.1

348 3.2

349 13.3

350 6.6

351 8.4

352 4.2

353 3.3

354 4.0

355 2.5

356 1.7

357 7.7

358 6.3

359 10.4

360 4.1

361 1.2

362 7.7

363 3.6

364 8.1

365 5.4

366 7.2

0 1 2 3 4+

N G2 G1 M E B ? panel�box�marker
94 93 84 88 5 0 1 p16�001�D10S1651
94 93 91 93 0 0 1 p16�001�D10S1652
94 94 93 93 1 0 0 p16�001�D10S1693
94 94 93 93 1 0 0 p16�001�D10S196
94 94 90 93 1 0 0 p16�001�D10S217
94 94 87 81 13 0 0 p16�001�D10S548
94 94 92 92 2 0 0 p16�001�D10S597
94 94 84 88 6 0 0 p16�001�D11S898
94 94 91 92 2 0 0 p16�001�D11S908
94 89 63 30 53 6 5 p16�001�D9S158
94 83 83 80 3 0 11 p16�001�D9S1682
94 93 89 78 14 1 1 p16�001�D9S1817
94 94 90 92 2 0 0 p16�001�D9S1826
94 94 93 90 4 0 0 p16�001�D9S283
94 94 86 92 2 0 0 p16�001�D9S290
94 92 83 88 4 0 2 p16�095�D10S1651
94 93 90 92 1 0 1 p16�095�D10S1652
94 93 92 93 0 0 1 p16�095�D10S1693
94 93 89 88 5 0 1 p16�095�D10S196
94 90 74 78 12 0 4 p16�095�D10S217
94 89 83 72 17 0 5 p16�095�D10S548
94 93 93 93 0 0 1 p16�095�D10S597
94 94 92 90 4 0 0 p16�095�D11S898
94 91 89 91 0 0 3 p16�095�D11S908
94 93 71 31 62 0 1 p16�095�D9S158
94 89 89 86 3 0 5 p16�095�D9S1682
94 93 90 91 2 0 1 p16�095�D9S1817
94 94 90 89 5 0 0 p16�095�D9S1826
94 93 93 93 0 0 1 p16�095�D9S283
94 92 83 89 3 0 2 p16�095�D9S290
78 76 68 69 7 0 2 p16�189�D10S1651
78 77 72 74 3 0 1 p16�189�D10S1652
78 72 68 69 3 0 6 p16�189�D10S1693
78 72 70 70 2 0 6 p16�189�D10S196
78 72 57 58 14 0 6 p16�189�D10S217
78 74 64 63 11 0 4 p16�189�D10S548
78 72 71 71 1 0 6 p16�189�D10S597
78 76 65 72 4 0 2 p16�189�D11S898
78 73 58 70 3 0 5 p16�189�D11S908
78 68 48 28 40 0 10 p16�189�D9S158
78 69 69 69 0 0 9 p16�189�D9S1682
78 75 69 70 5 0 3 p16�189�D9S1817
78 77 67 70 7 0 1 p16�189�D9S1826
78 73 69 71 2 0 5 p16�189�D9S283
78 74 57 66 8 0 4 p16�189�D9S290
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Panel 19 (test set)

0 10 20 30 40 50 60 70 80 90
Rank based on L-score

# aveL

367 6.5

368 8.2

369 4.3

370 2.6

371 + 1.9

372 2.3

373 5.9

374 + 4.4

375 4.3

376 2.0

377 4.9

378 2.9

379 5.3

380 4.1

381 + 1.4

382 1.9

383 + 1.0

384 5.0

385 + 3.1

386 5.2

387 1.9

388 1.8

389 4.6

390 7.1

391 5.1

392 4.3

393 + 3.5

394 4.2

395 7.3

396 + 4.7

397 4.4

398 2.3

399 4.1

0 1 2 3 4+

N G2 G1 M E B ? panel�box�marker
94 91 86 86 5 0 3 p19�001�D12S310
94 94 94 94 0 0 0 p19�001�D12S324
94 94 93 94 0 0 0 p19�001�D12S326
94 94 87 94 0 0 0 p19�001�D12S352
94 92 66 88 4 0 2 p19�001�D12S364
94 84 80 78 6 0 10 p19�001�D13S153
94 92 90 91 1 0 2 p19�001�D13S158
94 93 92 93 0 0 1 p19�001�D13S159
94 94 94 93 1 0 0 p19�001�D13S171
94 94 90 91 3 0 0 p19�001�D13S173
94 93 91 90 3 0 1 p19�001�D13S265
91 86 77 77 9 0 5 p19�095�D12S310
91 89 81 85 4 0 2 p19�095�D12S324
91 87 86 85 2 0 4 p19�095�D12S326
91 89 38 63 24 2 2 p19�095�D12S352
91 83 62 71 12 0 8 p19�095�D12S364
91 75 65 55 14 6 16 p19�095�D13S153
91 91 88 88 3 0 0 p19�095�D13S158
91 89 87 84 3 2 2 p19�095�D13S159
91 88 88 88 0 0 3 p19�095�D13S171
91 91 82 84 7 0 0 p19�095�D13S173
91 90 83 83 7 0 1 p19�095�D13S265
94 87 74 82 5 0 7 p19�189�D12S310
94 91 88 89 2 0 3 p19�189�D12S324
94 91 82 88 3 0 3 p19�189�D12S326
94 90 78 89 1 0 4 p19�189�D12S352
94 84 74 81 3 0 10 p19�189�D12S364
94 90 89 86 3 1 4 p19�189�D13S153
94 91 91 91 0 0 3 p19�189�D13S158
94 90 89 88 2 0 4 p19�189�D13S159
94 92 92 92 0 0 2 p19�189�D13S171
94 87 80 85 2 0 7 p19�189�D13S173
94 91 89 89 2 0 3 p19�189�D13S265
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Panel 20 (test set)

0 10 20 30 40 50 60 70 80 90
Rank based on L-score

# aveL

400 8.2

401 + 3.6

402 7.6

403 5.2

404 7.4

405 2.0

406 4.5

407 3.2

408 3.3

409 5.8

410 + 1.1

411 4.9

412 1.8

413 1.8

414 9.8

415 + 2.2

416 8.3

417 3.5

418 3.3

419 1.5

420 3.7

421 5.5

422 3.4

423 5.0

424 + 2.3

425 4.1

426 0.9

427 1.1

428 10.5

429 + 2.8

430 8.3

431 5.1

432 8.2

433 2.6

434 3.1

435 4.4

436 4.4

437 4.7

438 + 0.9

439 5.1

440 1.4

441 3.0

0 1 2 3 4+

N G2 G1 M E B ? panel�box�marker
94 94 90 92 2 0 0 p20�001�D14S258
94 94 87 92 2 0 0 p20�001�D14S261
94 94 91 92 2 0 0 p20�001�D14S275
94 94 92 92 2 0 0 p20�001�D14S276
94 94 84 91 3 0 0 p20�001�D14S280
94 93 74 84 9 0 1 p20�001�D14S283
94 94 88 91 3 0 0 p20�001�D14S288
94 94 91 93 1 0 0 p20�001�D14S292
94 94 86 89 5 0 0 p20�001�D14S63
94 94 92 93 1 0 0 p20�001�D14S65
94 77 56 53 19 5 17 p20�001�D14S68
94 94 87 92 2 0 0 p20�001�D14S70
94 81 59 47 30 4 13 p20�001�D14S74
94 93 59 82 11 0 1 p20�001�D14S985
94 93 91 92 1 0 1 p20�095�D14S258
94 90 87 90 0 0 4 p20�095�D14S261
94 93 92 92 1 0 1 p20�095�D14S275
94 91 89 91 0 0 3 p20�095�D14S276
94 92 89 91 1 0 2 p20�095�D14S280
94 89 67 77 12 0 5 p20�095�D14S283
94 90 74 85 5 0 4 p20�095�D14S288
94 94 93 93 1 0 0 p20�095�D14S292
94 91 83 89 2 0 3 p20�095�D14S63
94 94 92 94 0 0 0 p20�095�D14S65
94 67 67 40 7 20 27 p20�095�D14S68
94 90 79 85 5 0 4 p20�095�D14S70
94 77 57 44 33 0 17 p20�095�D14S74
94 70 29 53 17 0 24 p20�095�D14S985
94 91 88 89 2 0 3 p20�189�D14S258
94 90 89 88 2 0 4 p20�189�D14S261
94 91 89 89 2 0 3 p20�189�D14S275
94 89 86 89 0 0 5 p20�189�D14S276
94 89 85 87 2 0 5 p20�189�D14S280
94 90 83 88 2 0 4 p20�189�D14S283
94 88 81 83 3 2 6 p20�189�D14S288
94 93 93 93 0 0 1 p20�189�D14S292
94 90 81 88 2 0 4 p20�189�D14S63
94 90 88 88 2 0 4 p20�189�D14S65
94 65 40 35 24 6 29 p20�189�D14S68
94 90 83 88 2 0 4 p20�189�D14S70
94 74 64 57 17 0 20 p20�189�D14S74
94 79 60 73 6 0 15 p20�189�D14S985

153


	Abstract
	Declaration
	Preface
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation
	Genetic Markers and Microsatellite Loci
	Microsatellite Genotyping
	Overview of the genotyping procedure
	Sources of measurement artefacts
	A review of existing solutions

	Overview of the Proposed Method
	The unit of analysis
	The general approach
	Implementation


	Trace Alignment
	Background
	Electrophoresis of DNA fragments
	Size-standard fragments
	Sizing bias
	The implications of sizing errors to allele calling

	Formulation
	Algorithm Descriptions
	Trace resampling and interpolation
	Sizing curve
	Signal enhancement
	Fragment ladder summary
	DTW for trace alignment
	DTW for aligning allele frequency profiles
	Implementation

	Results and Discussion
	Comparison of some sizing methods
	Examples of trace alignment results

	Summary

	Allelic Pattern Estimation
	Overview
	Methods
	Formulation
	Genotypic least-squares approximation
	Allelic pattern model
	Model parameter optimization
	Unequal amplification ratio

	Results and discussion
	Model fitting
	GLSA caller
	Unequal amplification model


	Allele Calling and Quality Scores
	Overview
	Methods
	Formulation
	Feature variables
	Weight optimization
	The L-score
	Training and test data sets
	Assessing the performance

	Results and discussion
	FAL1 allele caller
	Performance on the test set
	Summary


	Summary and Conclusions
	Summary of the proposed method
	Results
	Future work
	Concluding remarks

	Bibliography
	Recursive Linear Filters
	Panels of the Data Set
	Complete Results
	The Training Set
	Panel-specific performance curves
	Quality maps

	The Test Set
	Panel-specific performance curves
	Quality maps



