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1 Introduction

LetY = [y; --- ,]asetofpoints,y; € R™. We would like to approximate
them with a simplex M = [p; -+ p,], where p; € R™ is a vertex and the
column vectors of M are affinely independent. Usually m > k, and at least
m =k — 1 for M to be affinely independent.

The most natural approach is to approximate each data point by a convex
combination of the vertices. Let X = |z --- :Bj] the coefficients of the
convex combination of each point, ; € R*. The problem can be considered as
an (approximate) decomposition:

Y~MX 2 >0, Y =1 (1)
7

that minimizes the sum of, say, least-square distance from a point y; to its
nearest-point map M x;.

Without additional constraints, any simplex large enough will minimize the
errors. To make the solution less arbitrary, archetypal analysis (Cutler 1994)
limits the vertices to be inside the convex hull of the data, making the solution
more meaningful but may be inappropriate for some problems [e.g. Figure 1].

Figure 1: Problems with missing vertices. (a) A set of point sampled from a triangle,
but with an area around a vertex truncated. (b) A set of points sampled from the
midpoint of the edges of a tetrahedron. (c) A set of points are sampled from the interior
each facet of a tetrahedron. The vertex in the middle are “behind” the drawing plane,
and the points from the facet closest to the drawing plane is colored green.



The “shrink-wrap” algorithm (Fuhrmann 1999) allows the vertices to be out-
side the convex hull, using the minimum simplex volume as the constraint.
However, this consequently requires all points to be strictly inside the simplex,
making it susceptible to noise and outliers. There are several other works some-
what related to simplex fitting (Renner 1993, Lee and Seung 1999, Parra 2000,
Venet 2001), but they need to make assumptions on the vertices (such as non-
negativity and sparseness, or known prior probability of u;).

In summary, the followings are the issues in simplex fitting that have only
been partially addressed by existing algorithms:

1. We need to be able to handle cases where m > k — 1. This means simul-
taneously finding the best affine hull of M in R™ and the placement of
the vertices within the affine hull. Some algorithms rely on separate pre-
processing to make m equal k — 1, such as using PCA, which may discard
some important information leaking to the unused subspace.

2. Robustness against noise and outliers. This means allowing some points
to be outside the simplex, otherwise the solution may hinge on (literally
speaking) a few bad points.

3. Because we are interested in the boundaries of the simplex, the algorithm
should not assume too much about the distribution of points inside the
simplex (compare Figure la, 1b, and 1c). We only need to specify the
noise level, which corresponds to how fuzzy the boundary of the simplex
and where we would like to draw the line.

4. There might be a lack of sparseness in X, which pulls the points away
from the vertices and edges toward the interior. Of course, for simplex-
fitting to be meaningful, there should be some points lying on the facets!
(thus having at least one zero-valued coefficient). However, only “weak
sparseness” of the coefficients is needed?. If there are enough points on
each facet to define its hyperplane, then the vertices are determined, as
the intersections of the hyperplanes [see Figure 1c].

5. The simplex can be anywhere in the data space (R™), and not necessar-
ily confined to the positive orthant. Of course, when desired, it should
be possible to restrict the vertices to be within a bounded set. This is
application-specific and should be achieved through a “plugged-in” gradi-
ent projection function, instead of a part of the core algorithm.

6. The computation should be as efficient as possible. Some of the exist-
ing algorithms requires computationally expensive non-negative or convex
least-squares solution at each iteration cycle.

This report is organized as follows. In Section 2, the proposed algorithm
is outlined. In Section 3, various examples using simulated data are shown to
illustrate the behavior of the algorithm. Possible improvements to the algorithm
and open questions are discussed in Section 4. Applications to real data are
presented in a separate report. Our focus here is on proposing a fairly generic
simplex-fitting algorithm.

1See Appendix A for the definition of a facet
2cf. “strong sparseness” required by some unsupervised learning methods, where most
coefficients are zeroes, except one.
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Figure 2: An illustration for equation 2

2 The Algorithm

Our algorithm is similar in spirit to k-mean clustering and mixture model fit-
ting using EM algorithm. It is iterative, and involves “partitioning” each data
point to each vertex. That is, a weight (analogous to the posterior probability
in EM algorithm, but without formal probabilistic meaning) is assigned to ev-
ery pair of point y; and vertex u;. Based on the weighted data points, each
vertex is updated independently. However, instead of maximizing the vertices
toward a central location (e.g., the mean), we “extremize” them outward. To
have a notion of “outward” and “inward”, we perform the operations in the
coefficient world (RF), where the signs of the coefficients indicates the inside-
outside polarity. Briefly, the algorithm consists of three main steps: regression,
expectation-like, and “extremization” steps.

Regression step Let’s reformulate the approximation as follows:

Y=MX+R Y my=1 (2)

where R = [r; --- rj], r; € R™, are the residual vectors normal to affine
hull of M (see Figure 2). Notice that we relax the non-negativity condition. As
we will see, this is fine if what we want to do is to optimize the vertices. The
negative coefficients are in fact the main driving force of our algorithm. If the
convex solution is required (the point P on Figure 2), it can always be done
separately after the best-fit simplex is found.

To find the affine coefficients x;, an arbitrary vertex can be chosen as the
origin (say p;). Let y% = y; —p; and M' = [pg —p; -~ py —p;]. We
simply solve the linear equation:

min [[y5 — M a2 . (3)

Obviously the i-th column of M is 0 and ignored. The corresponding coefficient
is set to:

.’L'ij =1- Z.Zhj (4)
h#i

so that the affine condition is satisfied. Note that the answer is the same re-
gardless of which vertex is chosen as the origin.
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Figure 3: The weight 7;; as a function of Y;, computed using equation 6 on the affine
coordinate ;. The size of the dots is proportional to 7;;. The three panels correspond
to the the lower-left, lower-right and top vertices, respectively.

Expectation-like step Here, each point is partitioned to all vertices by as-
signing a weight 7,; > 0, >°. 7;; = 1 to each pair of data point j and vertex i.
The closer a point j to a vertex i, the higher the weight should be. The prox-
imity is based on the coeflicient z;;, which corresponds to the location of the
point along an axis normal to the facet opposite the vertex. The weight can be
computed as follows:

¢(i5)
k
> dlwns)
h=0

where ¢(x) is a monotone increasing and nonnegative function. We will use a
simple one:

()

Tij =

0 <0
pr)=¢ =z 0<z<1 (6)
1 z>1

which works well for a wide range of problems?

function of the location in the affine hull.

. Figure 3 illustrates 7;; as a

Extremization step FEach vertex is updated by a sum of two orthogonal
gradients: (i) perpendicular to the affine hull, as the function of the residual r;,
and (ii) within the affine hull, as the function of the affine coefficients:

Ap; = Api + Apg . (7)

The first term is quite simple. Let w;,...,w, the weights of the points
(given as input; or set to 1/n if not available). It’s reasonable to require that
at convergence the following is locally minimized (for each vertex %):

n
D T wj |l - (8)
i=1

31t is possible to use smoother function such as sigmoidal (logistic) functions. In general,
any measure of “grades of membership” can be used for 7;;.




At the fixed point, this should hold:
n
D mjwir; =0, 9)
j=1

and hence, this updating formula:
n
Tij Wi Tj
j=1
Api ==

E Ti]"u}j
=1

Before defining the gradient within the affine hull, Au¥, we first look at a
geometric interpretation of the affine coefficients z;;. Consider any vertex p; as
the origin of a coordinate system, with the edges p;, — p;, h # i, as the basis
vectors. See Figure 4a, each point can be represented as:

M z; :/~“i+thj(p’h — 1) - (11)
hi

(10)
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Figure 4: Decomposition of the data points w.r.t. each vertex. (a) The original data
points. A point is decomposed w.r.t p; into zz; and z3; (blue lines). (b) Decompo-
sition of all points w.r.t. p;. The gray dots are the original points weighted by 7;;
(shown by the size of the dots). The black circles are p, + zp; (@, — ), for h = 2
and h = 3, along the respective edges. Similar pictures for pu, and p; are shown in
(c) and (d), respectively.



Thus, in the coefficient space, xp; is the projection of the point to the edges
incident on p;. Notice in Figure 4b how the projections along both axes are
distributed. There is a ‘mass’ of decomposed points around g, although there
are no points sampled around it in the original data (Figure 4a). This is the
heart of our “extremization” procedure:

The optimal vertex corresponds to lower quantiles of the decomposed
points along the incident edges.

This is how, we think, problems exhibiting “weak sparseness” can be solved.

Let 0; an extreme location statistics along the p, — p; axis for a given M
(which might not be the optimal simplex). The location of the vertex can be
improved by:

Api = Z Oni(pn — 1) (12)
h#i

It’s convenient to consider #j; as a component of a vector 8; € RF. If we set
0ii = 1 — > 42; Oni, then 8; becomes the affine coordinate of Auf + p;. The
new vertex is then:

P = Apt + M6, (13)

This completes one cycle of the iterative algorithm. Note that when a problem-
specific constraints need to be imposed on u;, a gradient projection function
can be inserted here. It should return a “chopped” gradient given pu7*" and the
current p,. Obviously, the initial simplex has to be in the feasible set.

The choice of extreme location statistics There are many ways to specify
01, that corresponds more or less to the lower boundaries of the decomposed
points in Figure 4. Any quantile-like statistics might be used, with a parameter
a correspond roughly to a location along the empirical distribution (for empirical
quantile, 8y; is the ath quantile). Note that we are not trying to estimate a
“true” parameter in a formal way, or to have a probabilistic interpretation of 6y,
although it should correspond somehow to the noise variance (in the noiseless
case, Op; = min; zp; at convergence).

We choose an M-estimator because it can be computed without sorting, and
the influence function can be flexibly modified to achieve a particular robustness.
For each distinct (ordered) pairs ¢ and h, we want to minimize:

> 7ij wj pa(h; — Oni) (14)

i=1

where p, is an asymmetric cost function. « determines how extreme we want
to be. The interpretation of 6p; depends on the choice of p and the sample
distribution (Green and Kozek 2001).

A simple choice for p is an asymmetric least-square estimator called “expec-
tile” (Newey and Powell 1987), defined as:

1-a)t? <0

Pa(t) = o — 1{z§0}|t2 = { at? z>0 0<ac<l. (15)



Equation 14 can be minimized by finding 8}, that satisfies:

> 7ij wj Yo @nj — Oni) = 0 (16)
j=1

where
bal@—0) =la—Tepl@—0) o Opals—6)/08. (17)

Obviously, smaller a means the balance is shifted further to the negative di-
rection. Its precise meaning is difficult and depends on the distribution of the
points (Abdous and Remillard 1995). For our purpose, it is a parameter to be
tuned in an ad hoc way for each problem domain.

The solution can be found using iterative reweighting (Huber 1981). How-
ever, in our case we want to couple the M-estimator iteration with the overall
algorithm. We think it’s better not to iterate until convergence for a given M,
because 0y; is conditional on the current values of 7;; (a function of M, which
in turn, a function of previous 6p;). Instead, only one update is performed.
This allows the weights 7;; to be readjusted first by the affine regression and
partitioning step, possibly leading to smoother and faster convergence (or at
least cheaper computation). There are other advantages: (i) we don’t have to
worry about the scale; zp; are always relative to the length of the edges of the
simplex, and (ii) the current 8y is always zero, because the new vertex becomes
the new origin.

With a slight abuse of notation, we redefine 6y; to be the next estimate
(instead of the solution of [16]). The update can then be computed as:

n
> 7ij wy | = 1ia<oy| Tn;
j=1

Oni = — - (18)
Y miiwjla— <ol

=1

At the fixed point, 85; = 0.

The effect of @ on the convergence We found that the convergence is
problematic for small a. The positive coefficients contribute very little to the
gradient, and the simplex expanded quickly outward. If the current simplex
is not correctly oriented, the improved simplex will enclose all points, but in-
correctly oriented (see Figure 5). When « is larger, the mass of points in the
optimal direction can pull the vertices and twist the simplex into the correct
orientation. However, we often want to have a small a to fully extremize the
simplex (e.g. when we are sure that the noise level is small).

Our solution is to start with a relatively large «, iterate until convergence
(that is, ||AM]||r ~ 0) for that value of a, and then gradually decreasing the
value of a until the desired «a is reached, iterating until convergence at each
given value. In practice, it’s sufficient to start with a = 0.5 and then decreasing
it exponentially in 5 steps or so to the final value. This directs the simplex to
grow from the inside, and roughly orients the simplex before pushing it to the
boundaries. Note that when we use the expectile (equ. 15), @ = 0.5 corresponds
to the mean.
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Figure 5: The effect of very small a on the convergence. (a) A cloud of points to be
fitted, the red triange is the current simplex, (b) the green dots are the decomposed
points based on the current simplex, (c) the new simplex resulting from using 6p; =
min; zp; (or @ — 0). This new simplex can not be improved in the next cycle.

Let us summarize the algorithm, incorporating the descending . It has an
outer loop for the “annealing schedule” of o, and the inner loop which contains
the core steps.

Algorithm SXFIT

Start with an initial simplex

lterate with decreasing values of a9 ... afinel
Iterate until ||AM,||lF ~ 0 :

o R-step: find the affine coefficients

e E-step: partition each point to all vertices

o X-step: extremize the location of the vertices

2.1 Implementation

The algorithm is fairly straightforward and simple to program. The R-step
needs safeguards against a collapse in the rank of M*. We use Householder
QR decomposition with pivoting (Golub and Van Loan 1996, Algorithm 5.4.1),
where the orthogonal vectors are sorted according to their norms. If the ratio of
lgill2/|lg1]l2 drops below a certain tolerance, the corresponding coeflicients z;;
are zeroed, and the vertex ¢ is considered indeterminate (otherwise all weighted
average formulas crash due to ) jTij = 0). p; is not updated in the X-step, but
it is not completely removed, in case the rank of M is regained in the following
cycles (i.e. if the collapse of the rank is a transient effect of a particular iteration
pathway).

If some vertices are still indeterminate after convergence, they are ignored
and we consider ourself overspecifying the number of vertices k. This allows us
to partially solve the problem of choosing the right k. We may still overfit (due
to noise), but not too much. Note that unlike PCA where the non-null basis
can be used immediately, we need to rerun the algorithm with smaller value of
k (because the basis vectors are not ‘nested’).



In general, Householder QR is not the cheapest way to solve linear least-
square problem. However, in our case usually the number of data points is large
(say, several thousands) and k is small. Most of the computation time is on
solving Rx; = QTyj, which is even faster than the normal equation method
once we have @ and R. The decomposition is roughly an mk? algorithm.
Solving n points requires n(km+ k?). The E-step and X-step are nk and nmk +
nk? + mk, respectively.

The numerical stability of Householder QR allows decent computation with
faster single-precision floating points, which is reasonable for many problems
where the raw data points are small integers coming from analog-to-digital con-
verters. We have implemented the algorithm as a C-library module, suitable for
inclusion in high-level analysis software such as R, or a standalone UNIX pipe.

2.2 Choosing an initial simplex

These are some of the requirements for a good initial value:

1. The rank of M has to be k — 1. Choosing k observations randomly is
a bad idea.

2. The vertices should be as mutually distant as possible.

3. If the vertices are already in the affine hull of the data, the convergence
might be faster. It is good if they are within the convex hull.

4. When there are constraints on the feasible solution (e.g. nonnegativity),
the initial simplex has to be in the feasible set.

5. Choosing the simplex should not be computationally too demanding.

One possible way to choose an initial simplex is to use Householder QR with
pivoting on the data, with a slight modification: only the first k¥ — 1 orthogonal
vectors need to be constructed.

First, find a point whose distance from the mean is the largest. Use this as
a vertex of the initial simplex:

p = argmax wjly, -yl . (19)
J

[w; is an optional point weight, if available.]

Let Y' = [wi(y, —#4) -+ wn(y, — p1)] and perform a QR decompo-
sition with pivoting to find the first & — 1 basis of Y'. We need neither Q
nor R, but only the permutation II. Let II;,II5,...,II; a set of indices such
that [|qm, ll2 > llgm,llz > --- > llam,_,ll2- The corresponding data points
Y- Ym,_, are used as po,..., . We have to watch ||g||z and reduce
k if ||g;|| becomes to small.

A conjecture: when there is no noise and all vertices are present in the
data, this procedure finds the true M.



Figure 6: Examples of three data sets generated using Eq. 20. 100 points were
sampled, and those located around the lower-left vertex were removed. The noise
scale is o = 0.015 (the average length of the edges is 0.72), which cause some points
to be slightly outside the simplex.

3 Examples on simulated data

3.1 Example 1: Convergence

The data points in this example are in R?, with k = 3. Thus, m = k — 1 (not
an overdetermined case). The points are generated in the following way:

z

y; =Mz; +¢, T =2

zij ~ Exponential(1), e~ N(0,0) (20)
02 09 05

M = [0.2 0.1 0.8]

To check the ability to extrapolate outside the convex hull of the data, the points
near one vertex are removed (those which are less than a certain Euclidean
distance from the vertex). Figure 6 illustrates several samples generate from
the model.

First, we compare the convergence from various initial simplices, with «
fixed (see Figure 7). At least in this trivial data set, all converges to the same
simplex. The final vertices approximates the “true” vertices, including the one
located outside the convex hull of the data.

The convergence is faster if the initial simplex has an approximately correct
orientation (that is, the vertices are pointing in the same general direction with
the true vertices). The convergence is worst if the initial simplex is “inverted”
(Figure 7b). Initially, the simplex expand quickly to enclose all points without
adjusting the orientation. Very slow adjustment is done later by slight twist-
ing. Figure 7c shows that our method for choosing an initial simplex using
Householder QR with pivoting (Section 2.2) works well to find one with a good
orientation and size.

The virtue of using descending a is shown in Figure 8. It’s clear that it is
easier for the algorithm to “negotiate” the simplex orientation at a relatively
high value of «, in the interior of the data points. Once good orientation is
achieved, reducing a expands the triangle without too much twisting, in less
number of iterations.

10
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Figure 7: The convergence from various initial simplices. The true vertices are shown
as large red dots. The improved simplices from all iteration cycles are drawn as colored
triangles, in rainbow coding (red for early cycles, turning to yellow, green, blue and
purple progressively). a = 0.001 and it is fixed (not descending). The convergence
tolerance is ||[AM||r/||M]||r < 0.001. (a) The largest triangle is the initial value. It
converges in 61 steps. Note that its orientation is approximately correct. (b) The small
triangle inside is the initial value, the orientation is the opposite of the true simplex
(converges in 325 steps). The drawing is zoomed out to show the trajectories of the
vertices. (c) The initial simplex does not intersect the true simplex or the convex
hull of the data points, but oriented similarly (converges in 51 steps) (d) The initial
vertices are three data points selected using QR with pivoting method (converges in
34 steps).

11
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Figure 8: Comparison between fixed and descending a. a) The same example with
that in Figure 7c. Convergence at & = 0.001 is achieved in 325 steps. b) Convergence
to the same simplex from the same initial values in 69 steps using a sequence of
a = 0.4,0.054,0.007,0.001. The convergence at a given value of « is visible from the
closeness of some successive triangles.

.
Soo o

a = 0.001 a = 0.0001

Figure 9: The effect of a on the extremeness of the final simplex. The same data set
and parameters is used as the previous example (Figure 7). Ounly the simplex from the
last iteration cycle is shown. The initial values are determined using the QR method.
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Figure 10: The effect of n on the estimates. a) n = 20, b) n = 50, and ¢) n = 100. In
each case, the data set is generated 50 times, and a simplex is fitted with a = 0.001.
The true simplex is shown in red triangle. The purple dots are the vertices found in
replicate experiments. The noise is o = 0.015.
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Figure 11: The effect of a on the estimates. The values of a are 0.1 (panel a), 0.01
(panel b), and 0.001 (panel c). n = 100, other parameters are same as in Figure 10.

Next, we show the effect final of value of o (Figure 9). As expected, the
smaller a, the more extreme the final simplex. Although decreasing a seems to
approximate the simplex better, having it too low (a = 0.0001) results in sen-
sitivity to the points on the boundaries (Figure 9d). Choosing the appropriate
a automatically is a problem still being investigated.

To look at the effect of sampling, we compare the solutions of different real-
ization of Eq. 20 (except that the lower-left corner is not truncated). Figure 10
shows the effect of the sample size n. As expected, the larger n the smaller the
variance of the estimates. Figure 11 shows the effect of a. Larger a pulls the
estimates vertices toward the interior. Figure 12 shows the effect of the noise
variance. When ¢ is larger, the estimated simplices are larger than the true
one (in addition having larger variance). This is understandable. The additive
noise convolves the simplex’s density. This means a has to be tuned to o (see
Figure 12¢, where the results of having « too low and too high are shown). The
systematic way to do this is, again, an open question.

What if we try to fit a triangle when the data points do not come a triangle?
Figure 13a shows points generated from an equilateral hexagon, and we run the
algorithm with k = 3. (This is the maximum for R?, otherwise the affine solution
can not be uniquely determined by unconstrained least squares?). As expected,
there are two possible equally likely solutions, corresponding to triangles that

41t might be possible to extend the algorithm to rank-deficient cases, using convex least
squares and, for the points inside, minimum norm solutions.

13
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Figure 12: The effect of noise on the estimates. The values of o are 0 (panel a), 0.02
(panel b), and 0.05 (panel ¢, purple dots) [Note that the average edge length is 0.72],
n =100 and a = 0.001. The green dots in panel c are the estimates with a = 0.1.

fit three non-adjacent faces of the hexagon. Note that in each sample, a single
initial value is used (automatically picked by QR with pivoting). It is interesting
to see if both answers are possible for a given sample when different initial values
are used (i.e. two local minima).

Finally, a mandatory test for Gaussian data is shown in Figure 13b. It shows
the results of the old saying: “trying to force a square peg (or a triangular one)
into a round hole”.

Note that in archetypal analysis (Cutler 1994), it is possible to fit a trun-
cated bivariate Gaussian points with a polytope with k¥ = 4 (not a sim-
plex), and the vertices tend to be located at the extreme ends of the axes
(positive and negative directions of the eigenvectors). This is possible
because it uses convex least squares, which can deal with rank-deficient
situations.

3.2 Example 2: “Weak sparseness”

In the introduction, we conjectured that if there are enough points on each facet
of a simplex, then the vertices might be determined, eventhough there are no
points sampled near the vertices, edges, or faces with dimensionality lower than
the facet.

The problem here is what exactly ‘enough points’ means. The necessary
condition is, of course, there has to be at least £ — 1 affinely independent points
on each facet. However, in noisy situations, estimating a hyperplane reliably
might require more points. Furthermore, in the absence of information about
which point comes from which facet, there is another question whether our
algorithm can find the simplex.

We investigate this using the following model. Points are generated from
the interior of the facets of a tetrahedron in R2. They are restricted to be at a
certain distance from the edges, by requiring the minimum coefficients (w.r.t the
three vertices) to be at least 0.1. One coefficient (corresponding to the vertex
not in the facet) is set to zero. A typical data set is shown in Figure 14a, which
can be fitted fairly well (Figure 14b). Note that the area around the vertices
are devoid of points.

The expected behaviors under replicate samplings are shown in Figure 15,
with various numbers of points per facets. It is indeed necessary to have many
more points than £ — 1 to have reliable estimates. This is probably because the

14
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Figure 13: a) The vertices found when fitting a triangle to a point set sampled from
a hexagon, which is the intersection between the red and blue equilateral triangle.
The red dots are one realization of the data points. There are 50 resampling, and
the results are classified into those that fits the red triangle (purple dots) or the blue
triangle (green dots). Either solution is found equally likely. b) The vertices found
when fitting a Gaussian data with o, = 0.3 and o, = 0.15. The radii of the ellipse are
20 in each respective direction. The red dots are one realization, fitted by the purple
triangle. The other purple dots are vertices from 50 replicate sampling. a = 0.01;
higher (or lower ) pulls toward (or pushes away from) the center (results not shown).

effective dimensionality of k& — 1 points randomly sampled from a hyperplane
might be less than k — 2, if they are too close to rank-deficient. Figure 16
shows the effect of various noise level. Increasing the noise quickly degrades
the performance. This might be because the (implicitly) estimated supporting
hyperplanes of the facets are sensitive to perturbation in their constituent points.

3.3 Example 3: Overdetermined cases (m > k)

In the previous examples, m = k — 1 and thus r; = 0 (all points fully described
by Mz;). Here we test a case where m > k. We use the same data generated
in Example 2, but embedded in R'%0 using an arbitrary orthogonal vectors,
created by performing QR decomposition on a random 100 x 3 matrix, and use
the matrix @ to transform the original data. Symmetric Gaussian noise is then
added in this R'% space. The result is shown in Figure 17 (for drawing purpose,
the vertices are projected back to R? using Q'). Visually, there is no significant
difference between the original problem and the one embedded R'%°, although
the noise is added in the larger observation space.

Using PCA to reduce the dimensionality of the data to R®, and perform the
fitting there, seems to be as effective (Figure 17c). The average distance between
the estimated vertices and the true one is similar between direct fitting in R'%°
and fitting in PCA world. It is not clear yet whether there are cases where
reducing the dimensionality using PCA is better or worse than direct fitting.
In this particular data set, the noise is relatively low and the 3-dimensional
subspace of the tetrahedron should be represented faithfully by the first three
eigenvectors.

The computation might be faster if dimensionality reduction is performed

15
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Figure 14: a) The red tetrahedron is the true simplex. The vertex in the middle
is “behind” the drawing plane. Eight points are sampled from each facet (without
noise). The green dots are points on the facet closest to the drawing plane. b) A fitted
tetrahedron is shown in purple, with o = 0.005.

a) oy | 9

Figure 15: The effect of the number of points sampled from each facet. The red
tetrahedron is the true simplex. The purple dots are the vertices fitted to 50 replicate
data set. a = 0.005, with no noise. a) 20 points are sampled from each facet. b) 12
points, and ¢) 5 points.

a) b) c)

Figure 16: The effect of noise. 20 points per facet are used. a) o = 0.01. b) o = 0.025,
and c) o = 0.05. Note that the average edge length is 0.95.
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Figure 17: Overdetermined fitting. 20 points per facet are used, o = 0.05, a = 0.005.
a) the original problem in R®. b) the problem is transformed to R'® by 3 random
orthogonal basis vectors, with the noise added in R'%. c) same data as b) but fitting
is done in the PCA world, spanned by the first 3 eigenvectors.

first, especially when the original m is much larger than k. If there is a worry
about important signals leaking to the discarded subspace, more dimensions
than & — 1 can be chosen (but still much less than m). Our algorithm can be
combined easily with various dimensionality reduction methods because it does
not require m = k — 1 and the vertices can be anywhere in the input space (not
confined to, say, the positive orthant).

3.4 Example 4: Outliers

To see the effect of outliers, we return to the triangle-in-R? toy problem. Uni-

formly generated points are added to the data set, with certain frequency. One

example is shown in Figure 18a. The algorithm is expectedly sensitive to points

far outside (Figure 18b). This is obvious from Eq. 15, where the square of the

negative errors dominate, unless a large value of « is chosen. However, our choice

of finding extreme locations using M-estimator allows flexible robustification.
For example, we can modify v, (defined by Eq. 17) to be as follows:

(1-a)B z<p
Yap(@) =4 (1—a)z B<z<0 (21)
ax z>0

which basically clamps the value of z if it becomes too negative. The results in
Figure 18c is found using 8 = —3 a. The rationale for parameterizing 3 as a
multiple of « is to make it adaptive to the descending values of a throughout
the iteration. This way more points are included in the early stage and onle
“pruned” later on, when the simplex is already near the boundaries.

There is no reason why the factor of 3 is chosen, other than that it works
for this particular example. Admittedly, this is still an anecdotal example,
presented to demonstrate the flexibility of the algorithm. More research is
necessary to find the best robust function, how to conveniently parameterize it,
and how it interacts with the descending a (or if it needs to interact at all).

4 Discussion

In summary, the proposed algorithm seems to be a powerful and generic simplex-
fitting method, addressing the issues outlined in the introduction. Of particular
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Figure 18: Potential robustification of the algorithm. a) A data set with outliers.
The red triangle is the true simplex. b) The purple triangle is a simplex found by
unmodified algorithm, with @ = 0.02. c) The simplex found using a slight modification
of the function ¥, (see text).

importance is its ability to handle data exhibiting “weak sparseness” and the
potential robustification.

This is still an early stage in its development. Many questions are still unan-
swered. We have shown only simulated data set in reports, so that a particular
feature of the algorithm can precisely illustrated. Several applications to real
data have been tried (with larger k, m and n), and will reported elsewhere.

The following subsections are some of the questions we are currently inves-
tigating (in addition to those already mentioned in the examples).

4.1 Is there a better way to specify the desired extremeness?

Let X~ the matrix derived from X where all positive values are zeroed. Recent
experiments (still being conducted) suggest that || X ~ || is minimized for given
a a. Furthermore, when « is lowered, the minimum value is also reduced. This
makes sense considering the loss function pa (z;) = | — 14,;<0}| 23;-

We may therefore define:

-1
SV

and interpret o as the “standard deviation” of the points outside the simplex.
This is intuitive because we can consider it as the noise level relative to the
simplex size (or maybe the average edge length). It should be resistant to the
variation in point density inside the simplex (whereas a might be sensitive).

To achieve a desired value of o, the outer loop of the algorithm needs to be
modified. Tt is still iterating over «, but the changes should be based on the
current value of o, changing o up or down depending on the difference between
the current and desired o.

a X~ lr

4.2 What is the algorithm minimizing?
We have shown that the algorithm seek to minimize a set of “distributed” ob-

jective functions, assigned to the vertices and edges:

n
minznj wj ||lr;ll3  for each i
M =
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and
n
IR}IHZ Tij Wi Pa(Th;) for each ordered pair (i,h), i # h
7j=1

where 74, r; and zp; are functions of M.

Is there any single ‘global’ quantity being optimized implicitly? Can we say
that we are also minimizing their sum? Anyway, let’s sum them up over i. For
the residuals:

k n n k
S mjwilivslls = D wjliril3d 7
i=1 j=1 j=1 i=1

n
= Y wjlrll3 -
i=1

For each edges ih, h # i:

i > i Tij W) palTnj) = i w;j i Tij{ [ k Pa(ﬂfhj)] - pa(ﬂ?u’)}
i=1 hi j=1 j=1 =1 h=1
= iwj{[ipa(xhj)] _iﬁjpa(mij)}
j=1 h=1 i=1
= iwj i(l—ﬁj)/’a(xw’) .

This is interesting. (1 — 7;;) is the ‘probability’ of a point belong to the facet
opposite p; (cf Figure 3, which shows the complement). z;; is the distance to
the facet. So the algorithm is performing what might be called ‘k-face clustering’
(by analogy with k-mean clustering). The solution depends on the partitioning
scheme (definition of 7;;) and the loss function (which can be made asymmetric
due to the inside-outside polarity of the face, unlike radial cluster centers).

This is a nice way to look at the algorithm. We may be able to give it
a proper probability interpretation from this angle. For example, we can
define a multivariate density with the mode right on hyperplane of a facet
(uniform throughout), and decreasing density outside as the function of
the perpendicular distance to the face (asymmetrically defined for nega-
tive and positive direction). This density can be cosidered a convolution
between a positive truncated-tail density (such as exponential) for the
“signal” and an isotropic density for the “noise”. In this case, the param-
eter o = || X ~||r/+/n is indeed a scale of the noise component. We might
be able to cast the algorithm as a type of mixture model fitting using EM
algorithm.

Can we say the following quantity is minimized overall?

n k
S w3+ A D21 = 7i) pa(aig) |

n

k
=Y wi{lrl3+ 2> =)l = 1o, <oy 75 |
j i=1

Jj=1

19



with A related to the size of M (a norm? determinant?), because we need to
make the unit of the coefficients comparable with that of ||r;||3. This makes the
algorithm a type of penalized least squares. (We must be implicitly assuming a
value of A somewhere. Where?)
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A Simplex Trivias

References on polytope geometry: Ewald (1996) and Griinbaum (1967).

Faces A face of a simplex is the intersection between a supporting and the
simplex. If there are k vertices, then there are 2* faces, including two improper
faces: ) and the simplex itself. Each face is also a simplex, with the vertices a
subset of M. Three types of faces have special names:

e A vertex is a zero-dimensional face
e An edge is a one-dimensional face

e A facet is a (k — 2)-dimensional face

Volume From Fuhrmann (1999). The volume of a simplex M is:

| det M|
VIM) = ———
(M) = 5
where M’ = [py —p; -+ p, — p;] and the i-th column removed, for any 4,

1 <4 < k. The determinant can be obtained from the product of the diagonal
of Rin M' = QR.
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