
Fast Hierarchical Clustering using
Reciprocal Nearest-Neighbor Chain

Algorithm

Pratyaksha Wirapati

Bioinformatics
Core Facility
http://bcf.isb-sib.ch

Swiss Institute of
Bioinformatics
http://www.isb-sib.ch

SIB Days 2009, Fribourg

1



Summary

Agglomerative hierachical clustering is a versatile workhorse method
for exploratory analysis of multivariate data such as gene expression
microarrays.

One limitation of commonly used implementations, such as hclust
and agnes in R, is that the algorithmic complexity is O(n3m), where
n is the number of items to be clustered and m the number of
features. Thus, it is not practical to cluster more than few thousands
items, such as all the genes in a typical microarray dataset.

I implemented an alternative algorithm based on reciprocal
nearest-neighbor chains which has algorithmic complexity of O(n2m)
and produces the same tree as classical hierarchical clustering
algorithm for linkage functions with reducibility property.

Typical microarray data matrix with hundreds of arrays and ∼20,000
probes can be clustered a few minutes on a typical desktop or laptop
computer.

2



Hierarchical Clustering Algorithms

The classical “brute-force” algorithm for agglomerative hierarchical
clustering starts by treating each item as a separate cluster, and then
succesively merging the closest pairs. This requires n steps, and
finding the closes pair at each step requires O(n2). Hence, the cubic
time complexity.

Priority queues may be used to cache pair ranking and reduce the
complexity to O(n2 log n), but not many implementations uses this.
Furthermore, it is still desirable to reduce the complexity further.

Since the late 1960’s it’s known that O(n2) algorithm is possible for
single-linkage distance between clusters, which makes the problem
equivalent to solving minimum spanning tree problems. However,
single-linkage clustering often produces counter-intuitive results. A
quadratic-time average-linkage algorithm, if possible, would be more
useful.

3



Reciprocal Nearest-Neighbors

The conceptual breakthrough came in the late 1970’s (Bruynooghe
1977, Benzécri 1982)1. The main idea is that to obtain the clusters
that will appear on the final tree, it is not important to have the best
pair at every step. As long as two clusters/items are nearest
neighbors of each other (hence, “reciprocal”), their merging will
appear in the final tree.

The tree is incrementally constructed in no particular order, yet the
final outcome will be the same.

1M. Bruynooghe 1977 Méthodes nouvelles en classification automatique des données
taxinomiques nombreuses. Statistique et Analyse des Données 3:24-42

J. P. Benzécri 1982 Construction d’une classification ascendante hiérarchique par la recherce
en châıne des voisins réciproques. Les Cahiers de l’Analyse des Données 7:209-218.

4



Nearest-Neighbor Chain Algoritm

1. Start with an arbitrary item i1

2. Find the chain

i1 → i2 → i3 → . . .→ ik

where ij+1 is the nearest neighbor of ij . Stop when the nearest
neighbor of ik is a cluster/item already in the chain.

3. Remove the reciprocal nearest-neighbor pair from the chain
(typically the last two of the chain) and merge the pair.

4. Continue extending the chain and merging the reciprocal pairs
until the chain is used up.

5. If there are still remaining items or clusters, start a new chain.

5



Implementation: nclust

Written as a C library (ANSI 99), called nclust.

Uses several other optimization tricks: caching and queueing of
distance between items/clusters, Lance-Williams update formula.

Distances between all pairs of items can be computed on-the-fly.
Pre-computation of all pairs (huge memory for large number of
items!) is not needed.

New data types (sparse, categorical, etc.) and the appropriate
distance or similarity measures can be flexibly added as “plug-ins”.

Binding as an R package, with fast implementation of large-scale
dendrogram and heatmap plotting.

6



Benchmark

●

●

●

●

●

100 200 500 1000 2000 5000 10000

number of items

tim
e 

(s
ec

on
ds

)

● agnes
hclust
nclust

0.
00

01
0.

00
1

0.
01

0.
1

1
10

• Hardware: a laptop with Intel
Core Duo (2.4GHz clock), only
one core is used. 2 GB RAM.

• Toy problem: a simulated ran-
dom matrix with varying number
of items. Compare with hclust

and agnes in R.

• nclust is not only faster, it’s
computation does not increase
as quickly. Every 10-fold in-
crease in the number of items re-
quires 100-fold more time (unlike
hclust and agnes, which require
1000-fold more time).

7



Real Data Examples

⇐

NCI60 drug response
data: 60 cell lines
(columns) and 10168
compounds (rows).
Comput. time: 12.3 secs
(On the same hardware
as in previous plot)

⇒

Breast cancer microarray
data (Chin 2006): 118
arrays, 22215 probesets.
Comput. time: 103 secs.

8



Large Expression Dataset: ExpO (GSE2109)

Data from Expression Oncology Project (http://www.intgen.org)

2035 tumors (various types), with 16634 non-redundant genes (after remapping
to the NM subset of RefSeq).

⇒
zoom

Computation time: ∼11 minutes. Peak memory usage: ∼1 Gb

9



Breast Cancer Meta-analysis
Coordinated hierarchical clustering of 15 datasets (all co-analyzed; heatmaps of
the other 12 datasets not shown)

⇐
Gene-by-gene
Cox regression
in all patients
or subtypes

Subtype:
L: ER+/HER2-
B: ER-/HER2-
H: HER2+

2100 tumors, 17168 genes. Comput. time: ∼13 minutes

10



Conclusions

The practical number of items that can be handled by hierarchical
cluster analysis is increased.

Ongoing works:

• Co-clustering across multiple independent and heterogeneous
datasets

• Fast distance computation for sparse binary matrices, such as
for GO and genesets/pathway data.

11


