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Outline

= Expression measures for Affymetrix
GeneChips

= Advantages and disadvantages for large
studies

= Subset strategies

= Resampling strategy

= Comparison of strategies

= Remaining issues/conclusions
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What is the problem?

= The good news. biological and medical

investigators are taking our advice ©,
so that microarray studies are now
becoming larger

= The less good news: limitations in
computing capabilities can make

quantifying expression more difficult ®
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Expression measures

= MAS 5.0- Affymetrix
= Mode/ Based Expression Index (MBETI) -
- Li-Wong method; windows executable dChi p
= Robust Multichip Analysis (RMA) -
- Irizarry et al, Bolstad ef a/; R pkg af fy
= Other methods include:
- plier, plier+16 (Hubbell, new Affymetrix)
- vsn (Huber et al, Rocke)
- gcrma (Wu et al.)
= Visit http://affycomp.biostat.jhsph.edu/
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Differential expression: MAS 5.0

MAS 5.0 MVA plot MAS 5.0 QQ-plot

ohserved guantiles

reference quantiles
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Differential expression: Li-Wong

Li and Wong's 8 MVA plot Li and Wong's 8 QQ-plot

abserved quantiles

reference quantiles
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Differential expression: RMA

BRMA MVA plot RMA QQ-plot

abserved quantiles

reference quantiles
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Advantages and drawbacks (I)

= MAS 5.0- Affymetrix
- quick when scale each separately to target

- problem - variance of lower expression, get
many false positives (hew algorithm
plier+16 might improve this; using vsn on
top of MAS 5.0 also improves)

= Mode/ Based Expression Index (MBET)
- model improves on MAS 5.0
- can fit with many chips (up to ~ 400)

- still room for improvement of expression
quantification
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Advantages and drawbacks (IT)

= Robust Multichip Analysis (RMA)

- background correction, quantile norm,
chip + probe model (median polish fitting)

- performs well on calibration data sets
- computational improvements (e.g. justRMA)

- can still have computational problems with
very large studies

=> Subset strategies
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Subset strategy: Extrapolation

= Fit model on only a subset of chips
= Apply mode/ to remaining chips

=> get gene expression measure
for each gene

ngu// ch ,;0 set :> expression matrix
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= Partition chips into subsets

Subset strategy: Partition

= Fit separate mode/s within each subset

= Combine to get full set

full

chip

sert

4 4 9%

Fit 1
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Problems

= Extrapolation
- fitting set characteristics ‘focked in’
- what if fitting set is 'bad’ in some way?
= Partitioning has this problem as well,
although to a lesser degree

= Both strategies exhibit some variability ;
perhaps more than we would like to see ...
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Variability of partitioning: expression
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Resampling strategy

= Apply subset strategy many times on
different subsets (generated randomly)

full chip set

: ]

partition 1

pantition 2
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Strategy comparison study
= Main ingredient:

compare expression measures and fest
statistics from a large (full) data set to
those from subset, resampling strategies

= Many times for subsets of given sizes
= Data sets:

- ALL (St. Jude Children's Hospital);
335 chips, publicly available

- HD (international collaboration); about 70
individuals, 3 tissues per individual
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Partition replicates (1 chip) vs. true
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Differences mean vs. true
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Effect on decisions

= Choice of the fitting set can be problematic
- time trend
- multi-center studies

= How are subsequent decisions (e.g. on DE,
choice of genes for followup) affected

- can't compare true/false positives,
because don't have a known' result
(for HD we might obtain gpcr data on
some 'interesting genes)

(i



1.10

095

1.10

095

Decisions can depend on fitting set

= Used fwo different fitting sets to estimate

expression on same Jeft out’'set (extrapolation)

= Used the resulting expression values in

calculations of other guantities (e.g. NUSE)

F. cerebellum.A.1 F. cerebellum. A2 -Boxplots of NUSE values
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Example: #-tests between ALL types

= 12 f-tests:
- type vs. normal (9 types)

- 3 other tests with different sample
sizes (large vs. large, small vs. small,
large vs. small)

= Did not use shrinkage (moderated t),
since sample sizes are not too small

= Compute on: full data, each partition, and
using mean expression across partitions
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Single subset f compared to true
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Mean expression 1 compared to true
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Variability of partitioning: p-values

=
-

Partition 2 p-value

Partition 1 p-value
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Mean expression p compared to true
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p-value agreement
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Possible computational improvements

= TIdeadlly, the less the need for subset
strategies, the better

= Improvements in computational feasibility
would lessen need

= Wish list:

- resolve memory management issues

- potential for parallelization of some steps
= Vital-IT
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Vital-IT

= Joint venture between academic and industrial
partners (SIB-managed)

- Universities of Lausanne, Geneva, Basel,
EPFL, Ludwig Institute for Cancer Research

- Hewlett-Packard, Intel

= High-performance computing center for life
sciences

- HP cluster of 32 servers, Itanium 2
- Software development, optimization
- Consulting for biology, medicine
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Conclusion

= RMA for large studies not always possible -
studies already in progress large enough to
prohibit ‘exact’ RMA calculations

= Partition-resampling strategy seems ‘safer
than using a single extrapolation or partition

= Here, differences are characterized and
compared to full data RMA as ‘truth’

= Tdeally, it would be nice to be able to
compare several strategies on large
‘calibration’ data sets (‘known truth’)
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