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The problem: an example
A study is carried out to examine mean IBD sharing
between concordant obese (BMI > 35) and discordant
sib pairs at 8 markers in the human OB gene region
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The problem: an example
A study is carried out to examine mean IBD sharing
between concordant obese (BMI > 35) and discordant
sib pairs at 8 markers in the human OB gene region

A second study performs multipoint tests of linkage
between obesity-related quantitative traits and 15
markers on sibship data from pedigrees ascertained
on a type II diabetic proband

A third study investigates a single marker (different
from those of Studies 1 and 2) in 400 sib pairs using
Haseman-Elston regression

Question: What is the evidence in favor of linkage
between obesity and the OB gene?
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What is meta-analysis?
Statistical methods for combining results of
independent studies addressing related questions

Several different methods, including
Comparative binary outcomes: combining odds
ratios
Continuous outcomes: combining parameter
estimates via fixed effects or random effects
models
Any outcome type: combining p-values from
hypothesis tests about the data

Alternative to meta-analysis: combining (or pooling)
data for the analysis

Not always appropriate to pool – Simpson’s paradox
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Why might meta-analysis help?

To obtain increased power

Studies with small sample sizes are less likely to find
effects even when they exist

‘Integration-driven discovery’ (IDD; Choi et al.,
Bioinformatics 2003)

Given the small (but increasing) size of many linkage
and microarray experiments, meta-analysis might be
considered a natural approach to the problem of
integrating results
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Combining information
To combine information across studies, we consider

Combining (pooling) raw data and analyzing as a
single data set (suggested in the linkage context by
Lander and Kruglyak, Nat. Genet. 1995)

may not be possible – e.g. raw data may not be
available
may not be sensible – e.g. too many differences
between the studies
may not be feasible – e.g. limited computing power

Combining parameter estimates
Fixed effects model (FE)
Random effects model (RE)

Combining p-values

Meta-analysis in genetics and genomics – p. 6/30



FE vs. RE meta-analysis (I)

FE and RE are both ways to obtain a single, combined
parameter estimate from a set of estimates obtained
from different studies

The combined estimates are weighted averages

FE assumes there is no heterogeneity between results
of the different studies

If the results are heterogeneous, then there is
assumed to be no single underlying value of HD effect
but rather a distribution of values

Differences among study results are considered to
arise from inter-study variation of true effect size as
well as chance variation
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FE vs. RE meta-analysis (II)

In FE meta-analysis, each individual study estimate
receives weight inversely proportional to its variance

RE meta-analysis assumes that individual studies may
be estimating different treatment effects

Study weights are adjusted to take into account the
additional variability τ 2 between studies: w∗

i = 1
(1/wi)+τ̂2

When the additional variability between studies is 0,
then the RE model reduces to the FE model

If assume normality of the estimates, can get p-values
(and q-values)
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Fisher combined p-values

Other methods for combining results focus on p-values

Usually preferable to combine data or parameter
estimates, but sometimes impossible – e.g., only
p-values available, no parameter estimates given

Several methods for combining p-values, an old
(1930s) and commonly used method is due to Fisher

The Fisher summary test statistic S = −2
∑k

i=1 log(pi)

The theoretical null distribution of S should be χ2
2k

Rhodes et al. (Cancer Res. 2002) obtain a p-value
for S by resampling
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Problem: study heterogeneity
In general, studies may vary in

scientific research goals

population of interest

design

quality of implementation

subject inclusion and exclusion criteria

baseline status of subjects

treatment dosage and timing

management of study subjects

outcome definition or measures

statistical methods of analysis
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Heterogeneity in genetics

In the linkage context, sources of heterogeneity include

different family structures

different ascertainment rules (e.g. concordant sib
pairs, discordant sib pairs, families with at least one
affected)

genetic heterogeneity between study populations

different genetic markers across studies

different statistical tests of linkage

phenotype definition
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Heterogeneity in genomics

In the microarray context, sources of heterogeneity include

differences in the technology used for the study

heterogeneity of measured expression from the same
probe occurring multiple times on the array

multiple (different) probes for the same gene

variability in probes used by different platforms

different gene expression measures, even with the
same technology
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Linkage: simple case
Simulated data from Genetic Analysis Workshop
(GAW) 11

2 genetically distinct, clinically identical diseases with
mild and severe forms

Single locus with 3 alleles, interacting with
environmental factor
2 epistatically interacting loci, associated with an
allele at one of the marker loci

Family linkage and disease data from 3 populations,
each with different genetic parameters

Genotypes at 300 polymorphic markers

4 studies (2 from same population with different
ascertainment schemes)
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Analyses: Simple case
Described in detail in

Goldstein, Sain, Guerra and Etzel Gen. Epi. 1999
Guerra, Etzel, Goldstein and Sain Gen. Epi. 1999

Mean IBD sharing (2-point sib-pair analysis)
Pooling raw data
FE meta-analysis
RE meta-analysis
Fisher combined p-value

Multipoint NPL
Pooling raw data
Fisher combined p-value

Assumption: all studies make p-values available if at
least one study found a ‘significant’ result
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Results: Simple case

When possible, better to combine raw data or
parameter estimates than to combine p-values

Combining p-values led to more false positives and
missed more true linkages

If results heterogeneous, may not be possible to
combine p-values (based on our assumption regarding
p-value availability)

Multipoint analysis had fewer false positives than
2-point
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Linkage: worst case (I)
Allison and Heo (Genetics 1998) combined p-values
across obesity linkage studies (as in the example)

Not always straightforward to obtain the relevant
p-values
In these cases, they used ad hoc methods to
obtain a single p-value for each study

Wise, Lanchbury and Lewis (Ann. Hum. Genet. 1999)
proposed the Genome Search Meta-analysis method,
GSMA

Also sometimes called Genome Scan
Meta-analysis
Ranks genome intervals according to evidence for
linkage, combines these ranks across studies and
assesses significance
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Linkage: worst case (II)
Loesgen et al. (Gen. Epi. 2001) proposed weighting
multipoint NPL scores

Applied to GAW 12 data
In a simulation study, Dempfle and Loesgen (Ann.
Hum. Genet. 2004) found favorable power
properties compared to Fisher combined p-values,
GSMA

Etzel and Guerra (Am. J. Hum. Genet. 2002)
combined H-E regression slopes via WLS to estimate
location of a QTL

Also provide SEs and test for linkage
Can also be applied to other statistics
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Microarray: simple case
Data from two experiments on the R6/2 mouse, a
mouse model of human Huntington’s disease (HD)

Looked at effects on gene expression of different drugs
on HD and normal (WT) mice

Each experiment is a 2x2 factorial layout
drug/placebo treatment
HD/WT mouse

Consider only the control groups for the two studies
Study I has 8 controls, Study II has 6 controls
In each study, half of the mice HD, half WT
Experiments carried out by the same laboratory a
few months apart, using the same protocols
Affymetrix MOE 430A; 22,690 probe sets (‘genes’)
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Analyses: simple case

Combined data analysis: pretend all the data are from
one study and analyze that single (combined) data set
(14 mice)

Meta-analysis methods: combine results from the two
individual studies by 3 methods

Fixed effects model (FE)
Random effects model (RE)
Combining p-values (Fisher)
χ2 assumption
Resampling p-value
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Combined data analysis

Consider all 14 chips as a single data set from the
same experiment

RMA all 14 chips together (all passed quality check)

Normalization: would like to remove (all) artifactual
differences between chips, leaving (only) true
biological differences

Identify DE genes using (single gene) linear modeling
approach (limma, Smyth 2004)

Model A: y = β0 + βHDI{HD=1} + ε

Model B: y = β0 + βHDI{HD=1} + βbatchI{batch=1} + ε

Model C: y = β0 + βHDI{HD=1} + βbatchI{batch=I} +

βHD×batchI{HD×batch=1} + ε

Meta-analysis in genetics and genomics – p. 20/30



Meta-analysis

First analyze each experiment as a separate study
Separately RMA the 2 sets (8 chips, 6 chips)
Within each study identify DE genes by the model
y = β0 + βHDI{HD=1} + ε

Heterogeneity analysis (χ2 test)

If appropriate, combine (via FE, RE, Fisher)
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Results: Persistent batch effects
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Results: HD effects
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Results: Stratification by het status

Sig. at FDR = .10 Sig. at FDR = .05 Sig. at FDR = .01

Method All Hom. Het. All Hom. Het. All Hom. Het.

C 0.07 0.06 0.19 0.03 0.03 0.12 0.01 0.01 0.05

FE 0.18 0.17 0.38 0.12 0.11 0.30 0.06 0.05 0.21

RE 0.06 0.06 0.01 0.04 0.04 0.00 0.02 0.02 0.00

FX 0.08 0.06 0.70 0.04 0.03 0.29 0.01 0.01 0.10

FR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FR Number (5) (3) (2) (3) (2) (1) (3) (2) (1)
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Results: Pairwise agreement

2
8

6

7

130

4

9

5
0.80 0.85 0.90 0.95 1.00

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

FDR = .10

Homogeneity agreement

H
et

er
og

en
ei

ty
 a

gr
ee

m
en

t

2

8

6

7

1

3

0 4

9

5

0.90 0.92 0.94 0.96 0.98

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

FDR = .05

Homogeneity agreement

H
et

er
og

en
ei

ty
 a

gr
ee

m
en

t

2

8
6

7

1

3

0

4

9

5

0.95 0.96 0.97 0.98 0.99

0.
80

0.
85

0.
90

0.
95

1.
00

FDR = .01

Homogeneity agreement

H
et

er
og

en
ei

ty
 a

gr
ee

m
en

t

Symbol 0 1 2 3 4 5 6 7 8 9

Pair FE FE FE FE FX FX FX C C RE

FR RE C FX RE FR C FR RE FR

Meta-analysis in genetics and genomics – p. 25/30



Microarray: worst case

Irizarry et al. (Nat. Methods 2005) carried out a
platform comparison that incorporated an assessment
of lab effect using a random effects model

Importance of using relative measures
See also Cox and Solomon Components of
Variance

Rhodes et al. (Cancer Res. 2002) combine
permutation t-test p-values for genes measured in all
studies

Choi et al. (Bioinformatics 2003) consider FE and RE
meta-analysis of standardized mean differences
between two sample types
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Concluding remarks (I)

Caveat: Pooling raw data not always possible or
sensible

Even in the ‘simple’ cases several decisions
required before data analysis can proceed
In sufficiently homogeneous cases pooling raw
data probably best
Publicly accessible databases for obtaining raw
data

Value of exploring methods on simple cases
Can give some insight into performance in the
more complicated scenarios
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Concluding remarks (II)

In the microarray simple case study here, we compare
results from different methods of analysis; can’t assess
method performance or robustness – ‘known truth’ not
available

Biological follow-up on many genes (currently in
progress)
Simulation studies may provide some insight
(Stevens and Doerge, BMC Bioinformatics 2005)

Study ‘batch’ effects
Normalize within study prior to combining
Account for study when pooling, e.g. random effect
(Irizarry et al., Nat. Methods 2005)
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Concluding remarks (III)

Between and within lab variability should be examined
where possible

What covariates might be associated with
measurements
Can suggest improvements in lab procedures

Implications for large single center studies, where
Patients recruited over time
Arrays not hybridized at the same time
Different technicians carry out the work
etc. ...
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