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1 Introduction

Microarray technologies measure mRNA abundance for thousands of genes in parallel. The
high throughput nature of microarrays has contributed to their rise in importance for study-
ing the molecular basis of fundamental biological processes and complex disease traits.
Whereas only a few years ago microarray experiments were uncommon, they are now regu-
larly used in a great variety of biological and medical studies.

Several different types of microarray platforms are available. Those currently in common
use include high-density short oligonucleotide arrays, such as Affymetrix GeneChip R© arrays;
long oligonucleotide arrays, such as those produced by Agilent; and cDNA arrays, fabricated
in laboratories on site at many academic and commercial institutions.

The widespread use of microarrays has resulted in a large-scale, rapid expansion of data.
Many research groups throughout the world are engaged in gene expression studies of the
same or similar conditions – specific cancers, for example. Data from many microarray
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studies are deposited in publicly available databases such as Gene Expression Omnibus
(GEO) [3, 13]. It is hoped that ready access to the data will facilitate the integration of
information across different studies.

Each microarray study gives rise to its own list of ‘interesting’ genes. The lists from
different studies, however, may not exhibit substantial concordance. Discordant results may
produce scientific confusion or disagreement regarding the underlying biology, as well as
lost time and misused resources. Consequently, the ability to synthesize information across
studies is essential.

Meta-analysis consists of statistical methods for combining results of independent studies
addressing related questions. One aim of combining results is to obtain increased power –
studies with small sample sizes are less likely to find effects even when they exist. Putting
results together increases the effective sample size, thereby allowing more precise effect esti-
mation and increasing power. The uncovering of a significant effect from a combined analysis,
where individual studies do not make positive findings at the same significance level, has
been referred to in the microarray meta-analysis literature as ‘integration-driven discovery’
(IDD) [7].

Given the limited size of most microarray studies to date, meta-analysis thus seems a
natural approach to the problem of integrating conclusions from different microarray studies.
Indeed, there is a recent and increasing literature for meta-analysis of microarray studies
[7, 18, 36, 37, 40]. Meta-analysis is not without problems, however.

A major difficulty with synthesizing results is the occurrence of study heterogeneity.
Studies which are apparently similar may in fact differ in many ways, some of which may be
quite subtle [43]. In general, studies carried out by different research groups may vary in:

– scientific research goals

– population of interest

– design

– quality of implementation

– subject inclusion and exclusion criteria

– baseline status of subjects (even with the same selection criteria)

– treatment dosage and timing

– management of study subjects

– outcome definition or measures

– statistical methods of analysis.

Additional issues more specific to the microarray context include:

– differences in the technology used for the study

– heterogeneity of measured expression from the same probe occurring multiple
times on the array

– multiple (different) probes for the same gene
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– variability in probes used by different platforms

– differences in quantification of gene expression, even when the same technol-
ogy is used.

In this chapter, we examine properties of different methods for combining information
from what is essentially a replicated experiment carried out with Affymetrix GeneChips.
Our aim is to demonstrate that even in this almost ideal situation, several issues concerning
appropriate data normalization and combination still arise. We first give some background
on the study, then describe the statistical analyses and present results, and conclude with
a discussion. Because the focus here is on meta-analysis, we treat only briefly the specifics
of microarray data analysis. For further details on these aspects see e.g. Goldstein and
Delorenzi [19] for a review or http://www.nslij-genetics.org/microarray/ for a bibli-
ography of papers on microarray data analysis.

2 Study description

The data were obtained from two experiments on the R6/2 mouse. The R6/2 mouse line
is transgenic for exon 1 of the human Huntington’s disease (HD) gene, thus serving as an
experimental model for the disease [33]. These mice exhibit mRNA changes weeks in advance
of neuronal death or gliosis phenotypes [31, 32].

Two separate studies were carried out to investigate the effects on gene expression of
different drugs on HD and normal (or wild type (WT)) mice in order to identify genes
differentially expressed between HD and WT mice. Each experiment was designed as a 2x2
factorial layout, where one factor is drug/placebo treatment and the other is HD/WT mouse.

We consider only the control groups for the two studies, which received the placebo
(injected with normal saline 30-60 minutes prior to sacrifice). In Study I there were 8
control mice, while in Study II there were 6 control mice. In each study, half of the mice
were HD and half WT.

The two experiments were carried out by the same laboratory a few months apart. In
each experiment, the same protocols were used throughout with regard to mouse breeding,
care and sacrifice, mRNA extraction, and hybridization to the microarray. Thus, these data
are essentially those of a completely replicated study.

Affymetrix GeneChips contain several (usually 11 – 20) 25-mer oligonucleotides used to
measure the abundance of a given target sequence, the perfect match (PM) probes, as well
as an equal number of negative controls, the mismatch (MM) probes. The set of probes
for a given target sequence is called a probe set. A single fluorescently labeled sample is
hybridized to the array which is then scanned with a laser, yielding absolute measures of
fluorescence intensity. The intensities are indicative of the amounts of mRNAs containing
the target sequence in the sample, and thus provide a means of quantifying levels of gene
expression.

The studies were carried out with the Affymetrix MOE 430A (Mouse Expression Ar-
ray). These chips contain in total 22,690 probe sets, to which, with a slight abuse of
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terminology, we refer henceforth as ‘genes’. The data are deposited in GEO with se-
ries accession number GSE1980, and should be publicly available by the end of 2005 at
http://www.ncbi.nlm.nih.gov/geo/.

3 Statistical analyses

There are several components of the data analyses to be carried out. First, quality of the
hybridizations should be assessed so that low quality chips are removed from further analysis.
Before statistical analyses can take place, the primary data obtained from scanning and image
analysis of arrays must first be quantified using a measure of gene expression. Once there
is a measure of expression of each gene for each individual, we compute for each gene a
statistic for assessing genes for differential expression between the HD and WT mice. Some
determination of significance should also be made for these statistics, taking into account
the multiplicity of hypotheses tested.

We compare analyses carried out under two scenarios: one, where the data are combined
and analyzed as a single set; and two, where the two data sets are analyzed separately and
their results are combined via meta-analysis. The steps are described in detail below. All
analyses reported here were coded in the R statistical programming environment [21, 34],
using the following packages from R (2.0.1) and BioConductor (release 1.5) [17]: affy [25],
affyPLM [6], car [16], limma [39], qvalue [12], and rmeta [30].

3.1 Chip quality assessment

We assessed all chips for quality with the RMA-QC approach described in Collin [9] and
implemented in the BioConductor R package affyPLM [6]. In this method, gene expression
is modeled as the sum of chip and probe effects, with the model fit by robust regression (i.e.
outliers are downweighted; see equation 1 below). Pseudoimages of the robust regression
weights or residuals for each probe provide a graphical means to assess chip quality; numerical
measures indicative of quality were also computed.

By these criteria, all 14 chips were of similar and suitably high quality that none required
exclusion.

3.2 Quantifying gene expression

Several methods of quantifying gene expression from probe fluorescence intensities on Affymetrix
GeneChips are in popular use, e.g. MAS5/GCOS [1], the Li-Wong method, implemented
in dChip [27], and Robust Multichip Average (RMA) [23], among many others. For a com-
parison of methods see http://affycomp.biostat.jhsph.edu/ [11], where it is easily seen
that no method is best under every circumstance. We have chosen to use RMA, due to its
demonstrated favorable properties [5, 23, 24].

An important yet difficult aspect of gene expression quantification is normalization. (The
term ‘normalization’ as used here is not related to the normal, or Gaussian, distribution.)
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The purpose of normalization is remove the effects of systematic variation other than that
due to the effect of interest. Examples of such variation include differences in sample prepa-
ration, scanning intensities, and variability among chips. Ideally, any observed differences in
gene expression remaining after normalization are due to differential expression rather than
artifactual differences in measured expression.

RMA consists of three steps: a background adjustment, quantile normalization and probe
set summarization. Background is estimated assuming that the observed signal is the con-
volution of an exponential signal with Gaussian background (noise). Quantile normalization
forces equality of quantiles across samples. Such a normalization is appropriate assuming
that the true distributions of intensities are the same in all samples (of course, the same
probe may occur at different quantiles across samples). For each probe set on the chip, the
log2 background-corrected normalized signal log2 b(PMij) is modeled as

log2 b(PMij) = μi + αj + εij , (1)

where μi is the summary measure of expression for the given probe set on chip i, αj is
a probe-specific effect, and εij are independently and identically distributed mean 0 errors
[24]. For parameter identifiability, it is assumed that

∑
j αj = 0. The model is fit via median

polish [44]; the estimated chip effect μi is the RMA value of the probe set for chip i. RMA
values were computed with the affy package.

3.3 Identifying differential expression

A commonly addressed problem in microarray experiments is detection of genes differentially
expressed under two or more conditions. A substantial number of statistical papers propose
methods for this purpose, with new ones still being introduced (for an overview see Goldstein
and Delorenzi [19]). The high dimensionality of microarray data has also brought to the fore
multiple hypothesis testing issues. The approach we adopt is described here.

3.3.1 Moderated t-statistic

Perhaps the most readily interpretable measure of differential expression is given by the fold
change (ratio) in expression of a given gene between two types of samples (HD and WT here).
It is more convenient to consider fold change on the logarithmic scale, M = (average) log2(fold change).

The measure M has the shortcoming of not taking into account differing variability of
different genes. The variability of M , though, is not the same across the range of signal
intensities. In particular, genes with larger variance across arrays are likely to produce large
values of M even when they are not truly differentially expressed between the two sample
types.

An obvious way to deal with differing variability is by standardization. Here M is divided
by its standard error, which is estimated based on expression measures of the corresponding
gene. Thus, the difference in average expression between sample types is quantified with a
t-statistic. However, a problem here is that the t-statistic performs very poorly at identifying
true differential expression with the small sample sizes found in typical microarray studies.
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Bayesian and empirical Bayes methods have been proposed as a compromise between
single gene estimates of variability and no estimate of variability at all. These use data from
all genes to improve estimation of differential expression for single genes [28, 39]. These
methods have been shown to perform well, in terms of true and false positive and negative
rates, at identifying differential expression. In addition, the methods have been extended
to be applied to a large variety of experimental designs through a linear modeling approach
[29, 39].

We follow the linear modeling approach here. For each gene g in a given study, the
measured gene expression vector Yg across samples is modeled as

Yg = Xβg + εg,

where X is the design matrix, βg is a vector of coefficients, and εg is a vector of error
terms. The design matrix X is the same for all genes within a study.

The moderated t-statistic for coefficient j and gene g is given by

mod tgj =
β̂gj

s̃g
√

vgj

,

where β̂gj is the estimate of coefficient j for gene g, s̃g is the square root of the empirical
Bayes shrinkage estimated variance, and vgj is the scaling for the variance, reflecting sample
size. That is, mod t is the ratio of M to its standard error, which has now been estimated
taking into account expression levels not only of gene g but of all genes. It is similar to the
ordinary t-statistic, but with a moderated standard error estimate and correspondingly an
increased number of degrees of freedom. For a detailed explanation, refer to Smyth [39]. We
base inference about effects on mod t.

3.3.2 Multiple hypothesis testing

The biological question of differential expression can be restated as a problem in multiple
hypothesis testing: the simultaneous test for each gene of the null hypothesis of identical
mean expression in the two sample types.

A multiplicity problem arises when attempting to assess the statistical significance of
the results on tests carried out on several thousands of genes simultaneously. With whole
genome coverage arrays consisting of probes for many thousands of genes, most genes will
not be differentially expressed between the conditions under investigation. Thus, even a
nominal p-value of say 0.01 cannot be characterized as ‘significant’, since such small p-values
will occur by chance when such a large number of tests are made.

Classical approaches to correction for multiple testing focus on control of the family-
wise error rate (FWER), or probability of at least one false positive result in all tested
hypotheses. The resulting procedures tend to be depressingly conservative though. Recent
developments in controlling the false discovery rate (FDR), or expected proportion of false
positive findings among the rejected hypotheses, appear to provide a promising way to come
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up with meaningful significance measures among thousands of genes [4, 35]. In general,
procedures controlling the FDR are typically less conservative than those controlling the
FWER. FDR control thus seems well suited for microarray studies.

The (nominal, unadjusted) p-value of a test reflects significance only for a single gene
considered in isolation. The q-value of a test measures the proportion of false positives (FDR)
incurred among rejected nulls when that test is called significant. It has been described as
the expected proportion of false positives among all test results as or more extreme than the
one obtained [41, 42].

We make use of q-values to take into account the large number of individual hypotheses
tested. The mod t p-values from a set of single gene tests are transformed to q-values with
the qvalue package [12]. We call a test result ‘significant’ by fixing a q-value (or FDR)
threshold, usually at 0.05. In many microarray studies a higher threshold may be more
relevant. For example, a FDR of 0.25 still suggests that three of four significant findings are
real. This may be all that is attainable with study sizes available in practice.

3.4 Combined data analysis

In the combined data analysis, we consider all 14 chips as a single data set from the same
experiment. This is not a completely artificial treatment, as most large experiments take
place over a period of time and include hybridizing groups of chips at different times. RMA
measures are obtained by quantifying expression, including normalization, on all chips to-
gether.

The linear modeling approach is used to identify genes differentially expressed between
HD and WT mice. We consider a series of models, each of which includes an effect on gene
expression of HD over WT. There might also be additional variability due to study, so we
also allow for a study, or ‘batch’, effect as well as entertain the possibility of an HD by study
interaction.

The design matrices are set up using treatment contrasts so that the effects of interest
are included as coefficients in the models. Thus, for each gene g, the three combined data
linear models are given by (the subscript g is suppressed):

Model A: y = βHD + ε
Model B: y = βHD + βbatch + ε
Model C: y = βHD + βbatch + βHD×batch + ε.

The coefficients are estimated by ordinary least squares. The limma package is used to
compute for each gene under each model the statistic mod t and corresponding p-values as
a prelude to obtaining q-values.

3.5 Meta-analysis

In the meta-analyses, each experiment is first analyzed as a separate study. After heterogene-
ity analysis, results from the two studies are combined under three meta-analytic techniques:
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fixed effects meta-analysis, random effects meta-analysis, and Fisher p-value combination.
Computations were done with the R package rmeta [30].

In the separate study analyses, gene expression is again quantified with RMA, but values
are computed using only chips from the same study (8 chips for Study I or 6 chips for
Study II). Linear modeling is carried out as above, but because each study is analyzed
individually the model includes only the HD effect (Model A). Fitting the model produces
effect estimates (coefficients) for each gene, while the empirical Bayes procedure produces
shrinkage estimates of variance, moderated t-statistics and p-values, which in turn yield q-
values and gene rankings based on evidence in favor of differential expression between HD
and WT mice.

3.5.1 Heterogeneity analysis

Prior to combining effect sizes from different studies, it is important to verify that they are
homogeneous – that is, that they all seem to be estimating the same underlying population
parameter. Existing graphical methods for assessing inter-study heterogeneity, such as forest
plots of individual study confidence intervals, seem of limited usefulness in the microarray
setting, as one such plot would be required for each individual gene. We thus depend on
numerical assessments to screen genes for heterogeneous treatment effects across studies.

The standard test of homogeneity [8] tests, for each gene g, the null hypothesis of homo-
geneity of treatment effects βi in k studies (the subscript g is suppressed)

H0: β1 = β2 = · · · = βk

against the general alternative that at least one βi is different. The test statistic Q is
given by

Q =
k∑

i=1

wi(β̂i − β̄.)
2, (2)

where β̂i estimates the treatment effect (the HD coefficient in the linear model for a given
gene) in study i, wi is the weight given to study i (most commonly taken as the reciprocal
of the variance of the outcome estimate), and β̄. is the weighted average treatment effect

β̄. =

∑
i wiβ̂i∑
i wi

. (3)

Under the null hypothesis, the distribution of Q is approximately χ2
k−1.

In the event that the null hypothesis is not rejected, any differences between studies are
assumed to be due to chance variation, and it is considered appropriate to combine estimates
via a fixed effects model. A major limitation of this approach, though, is the low power of
the test to detect even substantial heterogeneity due to small sample sizes or a small number
of studies. One way to avoid the risk of combining heterogeneous results is to relax the
significance criterion from 0.05 to 0.10, say.
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If instead the test shows that significant heterogeneity exists between study results, then
combination via a random effects model is typically favored. Where possible, heterogeneity
should be scrutinized rather than ignored, with an aim toward explaining important study
differences [2]. Because our studies were carried out by the same laboratory using identical
protocols, tracking down reasons that some genes show heterogeneity across studies while
others do not seems an unsolvable problem.

It should also be kept in mind that there is one homogeneity test per gene, so the usual
caveats regarding multiple hypothesis testing apply.

3.5.2 Fixed effects meta-analysis

Fixed effect (FE) meta-analysis assumes no heterogeneity between results of the different
studies and therefore that a fixed effects model can be used to estimate the assumed common
underlying treatment effect. In FE meta-analysis, each individual study estimate receives
weight inversely proportional to its variance. The weighted estimates are pooled as above
to yield the estimate of the treatment effect given by equation 3, where the weights wi are
inversely proportional to the variances. These weights are used as they minimize the variance
of the combined estimate β̄. [10]. The variance of the weighted estimator is just 1/

∑k
i=1 wi.

Under the assumption of normality of β̄., a p-value for each single gene test of HD effect
(i.e. differential expression between HD and WT for the given gene) is readily obtained;
corresponding q-values are obtained from the set of p-values across all genes.

3.5.3 Random effects meta-analysis

If the study results do exhibit heterogeneity, then there is assumed to be no single underlying
value of HD effect but rather a distribution of values. In the presence of heterogeneity,
differences among study results are considered to arise from inter-study variation of true
effect size as well as chance variation. Use of a FE model understates the true degree of
variability of β̄., resulting in p-values which are artificially low. A more conservative approach
is to use a model which accounts for the additional source of variability due to study.

Random effects (RE) meta-analysis assumes that individual studies may be estimating
different treatment effects. The aim is to estimate characteristics of the distribution of effects,
particularly the mean population effect size and between study variance of effect sizes. As
in the FE case we use weighted estimates, but the weights are adjusted to take into account
the additional variability between studies:

w∗
i =

1

(1/wi) + τ̂ 2
,

where τ̂ estimates inter-study variability (see Cooper and Hedges [10] for a derivation).
The estimated mean treatment effect is given by equation 3, but with w∗

i in place of the
wi. Similarly, the variance of the weighted estimator is now given by 1/

∑k
i=1 w∗

i . When the
inter-study variance is estimated as 0, the RE model reduces to the FE model.
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As for the FE model, single gene p-values from the RE model are obtained assuming
normality of the effect distribution; q-values are then computed from the p-values across all
genes.

3.5.4 Meta-analysis by Fisher p-value combination

In FE and RE meta-analysis, combined estimates of effect size provide the basis for analysis.
Other methods of meta-analysis, dating back to at least the 1930s, are based on combining
the p-values from independent studies. Although it is usually preferable to base inference
on effect sizes, there are situations for which combining p-values may be considered justified
– for example, when only p-values are reported without a corresponding estimate of effect
size, or when study characteristics (design, treatment levels) are sufficiently different that
combining effect estimates seems unacceptable [20].

Several methods exist for combining p-values. One popular method is due to Fisher
[15]. Under the null hypothesis of no treatment effect, the individual study p-values pi are
independent uniformly distributed U(0, 1) random variables. Upon rescaling, the Fisher
summary test statistic is given by

S = −2
k∑

i=1

log(pi). (4)

To assess the significance of the Fisher statistic S we need to determine its p-value. The
theoretical null distribution of S should be χ2

2k (here 2k = 4).
We compute p-values for the Fisher combined p-value statistic S in two ways: first, with

the χ2
4 approximation and second, by a resampling procedure proposed in Rhodes et al. [36].

In the resampling procedure, rather than choosing a p-value at random from U(0, 1) a p-value
is instead chosen at random from each of the sets of p-values from the two studies. These
are then combined as in equation 4 into a randomized summary statistic SR. We obtain
an empirical distribution of SR by repeating the resampling procedure 100,000 times. The
p-value for the Fisher S statistic is estimated as the proportion of the resampling-generated
statistics SR

i greater than or equal to the original observed value S. This method yields
a more conservative estimate for the p-value of S because the distribution of actual study
p-values is not uniform.

4 Results

Here we present detailed results of the analyses outlined above for the combined data set
and for meta-analyses of separate experimental study outcomes.
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4.1 Combined data

4.1.1 Combined vs. separate gene expression quantification

Because the first step of analysis requires a measure of gene expression, we compared quantifi-
cation of expression with the combined data (RMA values based on all 14 chips) to individual
study quantification (we separately compute RMA values based on the 8 chips from Study
I and RMA values from the 6 chips from Study II). Figure 1 contains plots to explore this
comparison.

Figures 1(a) and (c) show separate versus combined RMA values for one chip from each
study (chip 1 from Study I and chip 1 from Study II, or Chips I-1 and II-1). These chips
are representative of all chips in the respective studies – all plots were quite similar within
study – so our remarks on the plots apply to all chips. Each gene on the chip is represented
by a point in the plot, with the diagonal line representing equal expression by each method.

As it is difficult to detect differences from the line of equality in these scatter plots, we
have also plotted the corresponding rotated and rescaled version, the Difference-Average plot
[44] (a specific version of this plot is also called an MA plot in the microarray literature;
figures 1(b) and (d)). In this representation, the difference between RMA values computed
separately and combined is plotted against the average of the two values for the chip. If
both RMA values were identical, all points would fall on the horizontal line at 0. Differences
are more readily detected in this version of the plot.

It is easily seen that Study I chips tends to have higher RMA values when all chips
are combined, while Study II chips have lower RMA values in the combined data set. The
tendency persists throughout the range of (log2) signal intensities.

Many investigators have assumed that normalization of a set of chips together would
remove artifacts of this nature. In fact, this does not appear to be the case at all. The
persistence of the study batch artifact can be seen, for instance, using cluster analysis [14, 26].
When we cluster samples (chips) based on gene expression, the ones from the same study
cluster together. The clustering details (algorithm, dissimilarity measure, number of genes)
do not seem to affect the cluster results to any great degree.

Figure 2 shows an example of a dendrogram obtained clustering samples using all genes
with Ward’s method of clustering and 1 – correlation dissimilarity. The major cluster split
occurs between Study I chips and Study II chips. There is a minor, and less clean, split on
HD status: Study I samples 1 – 4 and Study II samples 1 – 3 are from the HD mice, the rest
are WT mice. Thus, we see that even in what we might expect to be quite homogeneous
studies, the most striking difference is in fact purely artifactual and is exactly of the sort
that normalization is meant to remove. It is not quite clear why the effects persist, they do
not appear to vary systematically with intensity (data not shown). However, quantile nor-
malization of the entire set together does not remove the study batch effect. The batch effect
must be removed in another way before reliable inference relating to differential expression
can take place.
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Figure 1: Comparison of RMA values when studies combined and separate. (a) RMA values
for chip I-1 computed within Study I vs. values computed from all chips combined; (b)
Difference (Separate – Combined) vs. Average RMA values for chip I-1; (c) RMA values
for chip II-1 computed within Study I vs. values computed from all chips combined; (d)
Difference vs. Average RMA values for chip II-1. Diagonal and horizontal lines indicate
equal values under both methods.
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Figure 2: Cluster dendrogram of combined data RMA values. Samples are clustered using all
genes, Ward’s method and 1 – correlation dissimilarity.

4.1.2 HD-study batch interaction

We next turn attention to linear modeling of gene expression in terms of the effects of
interest. Here, gene expression is obtained by computing RMA values for the combined set
of 14 chips. Although the primary focus is on the HD effect, we must also consider the
ramifications of other potential terms for the model. We have just seen the need to include
study batch in the model. We now consider Model C to assess the need to include the HD
by batch interaction term.

Histograms of p-values and q-values for the estimated interaction effects are shown in
figures 3(a) and (b). There are 2242 genes with unadjusted p-values less than 0.05, but only
3 q-values less than 0.10 and thus indication of interaction between HD status and batch
for only a few genes. In the face of this mild evidence, we discard Model C and ignore the
possibility of interaction in the rest of the analyses.

4.1.3 Detection of differentially expressed genes

On the other hand, we have seen that there is strong evidence of batch effects for many
genes. Using Model B to estimate HD and batch effects, we find evidence of significant HD
effects for several genes along with a staggering number of genes with strong batch effects
(figure 3(b) – (d)). While there are 785 genes with HD q-values < 0.05, nearly one half of
the genes (10571 out of 22690) have batch effects with q-values < 0.05. It is not necessary
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Figure 3: Histograms of p-values and q-values for Model C interaction term (a, b), and Model
B HD (c, d) and study batch (e, f) effects.
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to believe in the exactness of the p- and q-value estimation to conclude that there are many
genes with strong batch effects.

We consider Model A, which contains only the HD term, in order to compare genes
identified as differentially expressed between HD and WT mice with and without batch
effects. Not surprisingly, the significance of the HD effect is always higher (q-value lower)
for Model B, where a study batch effect is included in the model. This is because we have
controlled for an important source of variability here by introducing an effective stratification
factor (batch). There is within stratum homogeneity but heterogeneity between strata,
resulting in increased power to detect HD differences.

Figure 4 displays the q-values for individual gene HD effects both with and without batch
effects in the model. This plot shows the importance of the batch effect in uncovering differ-
ential expression due to HD status. Use of Model B produces an additional 681 significant
genes at the same FDR of 0.05 (points in black to the left of the vertical line and above the
horizontal line at 0.05).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HD q−values

Model including batch effect

M
od

el
 w

ith
ou

t b
at

ch
 e

ffe
ct

*

*

*
*

*

*

*

*

*
** **

*

* *
*

*

*
**

*

*
**

*
*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

**

*

*

*
*

**

*

**

*
*

**

*
**

*

*

*

**

*
*

*

*

**

*

*

*

*
*

*

*
*

*
*

*
**

*

*
*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*
**

*

*
*

*
***

*

*

*

*

*

*

*

*

*

*
**

*

*
*
*

*

*
*

*

**
*

*

*

*

*

*

*
*

*
*

*

*

*

*****
*

**

*

*

*

*

*

**

*

*
*
**

*

*
*

*

*
**

*

**

* *

*

*

*
**

***
*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*
*

* *
*

*

*

*

*

*

*
*

*

*

*

*
*

*

*
*

*
*

*

**

*
*

***

*

*

*
*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*
*

**
*
**

*

*

*

**

*

*

*

*

*

*

*
**
*
*

*

*

*
*

*

*

*

*

*

*

*

* *

*

*

*

*
*
*
*

*

**
*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

***
*

*
*
*

**
*

*

**

*

*

*
*

*

*

*

*

*

*
*

*

**

*

*

***

*

*

*
*

*

*

*

*

**

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

**

*

*

*

*

**
*
*

**

*

*

*

*

*

*
*
**

*

*

*

*

**

*

*

*

**
*
*
* ***
*
*

*

*

*

*

*

*
*
*

**

*

*

*

*

* *

*

*

*

*

**
*

**

*

*
*
*

*
***

*

*

*
*

*

*

*

*
***

*
*

*

*

*
*

*

*
*

*

*

*
*

**

*

*

*

* *
**
*
*

*

* **

*

*
*

*

*

*

*
*

*

*
* *

*

*

*
*

*

*

*

*

*

*
*

*

* *

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*
*

*

*
**

**

**
*

*

*
*
**
**

*

**

*

*

*

*

*

*

*

*
**

*

*
*

*

*

*

*
*

*
*

*

*

*
*

*

*

*

*

**

*

*

*

**
*
*

**
*

*

*
**

*

**

*

*

*

*

*

*

*

*

*

*

*
*

*

*
**

*

*
*

*
**

*

*
*
*

*

*

*

*

*

*
* *

*

*

*

**

*

*

*

*

**

*

*

*

*
*

*

*
*

*

*

*
*
** *

*

Figure 4: q-values for HD effects without (Model A) vs. with (Model B) batch effect. Solid
diagonal line indicates equal values; dashed vertical and horizontal lines indicate a FDR of
0.05. Highlighted points are genes with significant HD effects for Model B but not for Model
A.

A list of ‘interesting’ genes, those identified by the analysis as differentially expressed
between HD and WT mice, can be produced upon selection of a significance threshold for
the HD effect q-value, such as a FDR of 0.05. For comparison with results of meta-analyses
of Studies I and II (below), we retain not only the gene list but all of the mod t p-values and
corresponding q-values obtained using Model B.
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4.2 Meta-analysis of Study I and Study II

Another strategy for dealing with study batch effects is to quantify gene expression separately
for each study and then combine the studies by meta-analytic techniques. This is how the
problem would necessarily be handled in the case of unrelated studies carried out by different
research groups. Here, we are able to examine how meta-analysis would compare with a
combined data analysis.

4.2.1 Heterogeneity analysis

We investigate heterogeneity of gene-specific HD estimates from Study I and Study II by
computing the statistic Q (equation 2) as well as estimating the inter-study standard devi-
ation (SD) τ for each gene. Characteristics of these are plotted in figure 5.

There is evidence of HD effect heterogeneity for some genes. Several genes have small
nominal, unadjusted p-values: 3273 for p < 0.05; 5230 for p < 0.10 (figure 5(a)). If we
choose a more stringent criterion of significance, say a q-value of 0.10, there are still 802
genes with significant heterogeneity. This is substantially larger than the number of genes
for which an interaction effect was detected, but also very much smaller than the number
with a significant batch effect.

The quantile-quantile plot (figure 5(c)) shows some deviation from the assumed χ2
1 null

distribution. This could be due to inadequacy of the χ2
1 approximation, but as it is unlikely

that all the nulls are in fact true we instead interpret this as indicative of the presence of
genes for which the alternative holds, i.e. there is some true heterogeneity. Since the χ2

test has low power to detect heterogeneity for the small study number and sample sizes that
we have, there is likely to be a greater degree of heterogeneity, and for more genes, than
suggested here.

The distribution of estimated inter-study SD τ̂ is highly skewed. Over 70% (16428) of
genes have τ̂ < 0.01 (figure 5(d)). The value of τ̂ corresponding to a FDR of 0.10 is about
0.066. This gives some idea of what a ‘large’ value of τ is in this context. An example
of intensities for a gene displaying heterogeneity is provided in Table 1, which gives the
individual study RMA values of each chip for a gene with τ̂ ≈ 0.1.

Table 1: Individual Chip RMA Values for a Gene with τ̂ ≈ 0.1
Chip number Summary

1 2 3 4 5 6 7 8 Mean SD
Study I 8.67 8.88 8.91 8.64 9.08 9.02 9.02 9.27 8.94 0.21
Study II 9.86 9.75 9.96 9.83 9.57 9.73 9.78 0.13

One purpose of testing homogeneity is for deciding between the FE and RE model for
combining effect estimates. There will not be a large difference between FE and RE meta-
analysis for genes with small τ . A general recommendation which has been made is to carry
out both then compare similarity of results. If the results are similar then there is unlikely
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Figure 5: Plots for heterogeneity analysis: histograms of (a) p-values and (b) q-values for the
homogeneity statistic Q; (c) quantile-quantile plot of Q compared to the theoretical χ2
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tribution with 95% confidence region (dashed lines); (d) histogram of gene-specific estimated
inter-study SD for the 21419 genes for which τ̂ <

√
.05.
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to be important heterogeneity and the FE model would typically be reported. If results are
different, it is usually considered preferable to use RE meta-analysis to estimate the mean
and SD of the effect size distribution. In the case of extreme, unexplained heterogeneity, it
is probably more suitable to avoid combining the study results at all.

4.2.2 Fixed effects and random effects meta-analysis

Based on the results of the heterogeneity analyses, we would choose to adopt the RE model
for combining HD effect size estimates. Nevertheless, we investigate both approaches here
in order to compare them.

Figure 6(a) compares the combined HD (mean) effect estimated by the RE model versus
the FE model combined estimate. With the exception of a few genes, these combined
estimates tend to be remarkably similar.

Due to the additional variability included by the RE model, however, there is a great
deal of difference between the standardized estimates (figure 6(b)). Here, we can see that
the FE standardized estimates are stochastically larger than the RE ones: about half of
the genes have identical results for FE and RE, but for only 949 genes (or 4%) is the RE
standardized estimate larger than that of FE. This phenomenon is also clearly reflected by
the distributions of the corresponding q-values (figures 6(c) and (d)) – at any FDR, many
more genes are called differentially expressed between HD and WT by the FE model.

Figure 7 shows how the methods compare for compare for different degrees of hetero-
geneity. In figures 7(a), (b) and (c), q-values are transformed by − log10 so that larger values
are more significant. We see that significant effects in the RE meta-analysis tend to be for
more genes with more homogeneous effects across studies (figures 7(a), (b)); that is, genes
for which the inter-study variability does not overwhelm the size of the estimated effect.
The q-values from FE and RE are compared directly in figure 7(c), where it is seen that
the FE combined HD effect estimate is more significant than that of RE for virtually all
genes. Finally, the location (centered at 0) and flatness of the loess curvefigure 7(d) show
that heterogeneity is not more frequently found for larger estimated mean HD effect sizes.
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under both methods.

19



0 2 4 6 8 10 12

0
1

2
3

4
5

FE model

(a) − log10 FE q−value

−l
og

10
 Q

−s
ta

tis
tic

 q
−v

al
ue

0 2 4 6 8 10 12

0
1

2
3

4
5

RE model

(b) − log10 RE q−value

−l
og

10
 Q

−s
ta

tis
tic

 q
−v

al
ue

0 2 4 6 8 10 12

0
2

4
6

8
10

12

FE vs. RE

(c) − log10 RE q−value

−l
og

10
 F

E 
q−

va
lu

e

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−1
.0

−0
.5

0.
0

0.
5

RE model

(d) Q−statistic q−value

H
D

 e
ffe

ct

Figure 7: Characteristics of FE and RE inference for varying heterogeneity. − log10 q-value
of homogeneity Q-statistic vs. − log10 q-value of combined HD effect estimate from FE (a)
and RE (b), vertical line indicates HD effect FDR of .05, horizontal line indicates Q-statistic
FDR of .10; (c) − log10 q-values for FE vs. RE, diagonal line indicates equal values; (d)
RE model estimated mean HD effect size vs. q-value of Q-statistic. vertical line indicates
Q-statistic FDR of .1, horizontal smooth line is a loess curve.
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4.2.3 Fisher p-value meta-analysis

Figure 8 displays results obtained by combining for each gene the HD mod t p-values from
Study I and Study II. The distribution of q-values obtained from p-values derived from the
χ2

4 distribution is compressed downward toward significance (a). Resampling p-values are
exceedingly conservative compared to χ2

4-derived p-values (b). Compared to RE model p-
values the χ2

4 p-values are liberal (c), while the resampling p-values are again conservative,
although somewhat less than in comparison to the χ2

4 p-values (d).
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Figure 8: Comparison of Fisher S statistic q-values. (a) Histogram of χ2
4 q-values; scatter

plot of q-values obtained by χ2
4 vs. resampling (b), χ2

4 vs. RE (c), resampling vs. RE (d).
Diagonal lines indicate equal values under both methods.

The lack of agreement indicates the degree to which inference depends on the specific
method chosen. Even where the same statistic is used, there is a real problem determining
its p-value – the χ2

4 assumption results in very different p-values from the resampling-based
ones. Caution must therefore be exercised in choosing a method and interpreting results.
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4.2.4 Comparison of results stratified by heterogeneity status

The findings presented thus far consider the entire set of genes in aggregate. However, the
set of all genes can be viewed as a mixture of two types: genes for which the HD effects are
homogeneous and genes for which the effects are heterogeneous across studies. It is therefore
worth looking at characteristics of the analyses when genes are stratified by heterogeneity
status.

Defining heterogeneity status requires a criterion for significance. In the microarray con-
text, one must consider its impact on the subsequent identification of differential expression.
To be more conservative in calling a gene differentially expressed, a fairly liberal heterogene-
ity criterion would seem in order. Taking into consideration the outcome of the heterogeneity
analysis above, we decided on a FDR cut-off of 0.10 for Q. For this threshold, the number
of genes for which studies are heterogeneous is 802; there are thus 21888 homogeneous ones.

Table 2 gives the proportions of genes with significant HD effects for the four meta-
analysis methods, as well as the combined data, for all genes together and also stratified by
heterogeneity status (Hom. or Het.) at varying FDR for the HD effect. The methods are:
C = combined data, FE = fixed effects model, RE = random effects model, FX = Fisher
p-value combination method, χ2 p-values, and FR = Fisher p-value combination method,
resampling method. The Fisher resampling method proportions are extremely low, so the
numbers of genes are also reported. For RE, proportions given as zero are actual zeros.

Table 2: Significance Proportions for Meta-analysis Methods
Sig. at FDR = .10 Sig. at FDR = .05 Sig. at FDR = .01

Method All Hom. Het. All Hom. Het. All Hom. Het.
C 0.07 0.06 0.19 0.03 0.03 0.12 0.01 0.01 0.05
FE 0.18 0.17 0.38 0.12 0.11 0.30 0.06 0.05 0.21
RE 0.06 0.06 0.01 0.04 0.04 0.00 0.02 0.02 0.00
FX 0.08 0.06 0.70 0.04 0.03 0.29 0.01 0.01 0.10
FR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FR Number (5) (3) (2) (3) (2) (1) (3) (2) (1)

FE finds the most significant effects, followed by Fisher χ2 (FX). These two methods as
well as the combined data method also find drastically higher rates of significant effects for
studies which are heterogeneous, pointing to the need for caution when combining informa-
tion. In contrast, RE finds lower rates of significant effects under heterogeneity.

4.2.5 Pairwise agreement of meta-analysis results

Lastly, we look at agreement for pairs of methods stratified by heterogeneity status, varying
the FDR for calling a gene differentially expressed between HD and WT (figure 9). The
simple agreement rate is just the proportion of genes for which both methods agree on
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whether or not the HD effect is significant. The correspondence between plotting symbol
and comparison pair is given in table 3.
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Figure 9: Simple agreement rates of pairs of methods for varying FDR. Agreement rate under
heterogeneity vs. agreement rate under homogeneity for (a) FDR = 0.10, (b) FDR =0.05
and (c) FDR = 0.01. Dashed vertical and horizontal lines separate groups of pairs.

Table 3: Correspondence of Plotting Symbol and Pair
Symbol 0 1 2 3 4 5 6 7 8 9
Pair FE FE FE FE FX FX FX C C RE

FR RE C FX RE FR C FR RE FR

The pairs appear to fall roughly into three groups when homogeneity and heterogeneity
rates are considered jointly. Pairs 0 – 3 form one group. This group consists of all pairwise
comparisons with FE. These pairs have the lowest agreement under homogeneity. Pairs 4,
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5 and 6 have high homogeneity agreement and lower, but increasing with decreasing FDR,
heterogeneity agreement. FX appears in each of these pairs. Finally, pairs 7, 8 and 9 have
highest agreement under both homogeneity and heterogeneity. These are all pairs are formed
from C, RE, FR.

5 Discussion

Pooling raw data from different studies for analysis is not always possible; even when it is
possible it might not be recommended (e.g. to avoid Simpson’s paradox [38]). However,
in the simple setup we have described here, where a single lab has carried out the same
experiment twice, one would think that combining the raw data should be a fundamentally
sound approach. In particular, carrying out the normalization step on the aggregated data
would seem not only desirable but also necessary.

We have illustrated, however, that even in such an uncomplicated scenario, without
issues of different platforms or experimental designs and protocols, integrating the available
information might not be completely straightforward. We have seen persistent batch effects
that must be taken into account. We would recommend that new methods developed for
more complex situations also be tested in simpler cases so that the properties of the methods
may be better understood.

The importance of considering variability across different labs has been noted in the liter-
ature [22]; our work here suggests that within lab variability may also need to be considered.

Our results also have substantial implications for large single studies, where patients are
recruited over time and arrays are not all hybridized at the same time. Avoidance of prob-
lems before they arise calls for careful study design in advance. In addition, comprehensive
exploratory data analyses are required once data are collected, to identify and adjust for
sources of variability which could obscure the underlying biology. The presence of strong
batch effects may be indicative of aspects of laboratory practice in need of improvement.
Analysis of data for batch effects can reveal such problems and could therefore help in their
rectification.

In this work we can compare results from different methods of analysis, but we are unable
to rigorously assess method performance or robustness because it is not feasible at present to
determine the truth of the findings. To date we can identify as true positives only a subset
of genes that are likely to be differentially expressed in R6/2 mice [31, 32], and we also do
not yet know which identified genes are not (false positives), or which genes missed are in
fact differentially expressed (false negatives). It is advisable to build some truth into the
experiment where feasible, for example by using spike-in controls (specific RNAs added to
the sample in known quantities). Nevertheless, we hope that this survey of single methods
and method agreement can provide some guidance to investigators in selecting appropriate
procedures.

In a similar investigation, [40] use a model to generate a known truth and simulate data
from their model to examine properties of meta-analysis of microarray studies. Although this
approach may provide some useful broad guidelines, further empirical evidence is required
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to gain more refined insight into the sources and magnitudes of variability and their effects
on properties of meta-analysis of microarray studies.

In most studies, researchers have the resources for further investigation into only a few of
the findings. A typical validation study consists of following up on a few genes, often in the
range of 5 – 20. The research community would benefit from larger scale follow-up studies
to enable the properties of different methodologies for synthesis to be judged more critically.

Although a number of intriguing methods have been introduced for meta-analysis of
microarray data, the literature in this field is not yet fully developed. Clearly there is a need
for further empirical and theoretical research in this challenging area. Large scale validation
studies would provide a welcome opportunity to advance both biological and methodological
knowledge.
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