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Principal Components Analysis; Cluster Analysis

http://www.isrec.isb-sib.ch/~darlene/geneve/
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Locating a point in the plane
We can describe the location of a point in 
the plane by saying how much we move in 
the horizontal (X) direction, then how 
much we move in the vertical (Y) direction
As an example, think of describing how to 
get to some particular place from where 
you are (for example, how to get from the 
train station to the CMU)
One way to do this is to say how far you go 
NORTH, then how far you go EAST
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Directions
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North = 1st?

There is no rule that says we must first 
say how far to go NORTH – for example, 
we could instead say first how far to go 
SOUTH (can think of as ‘negative 
NORTH’)
We could even say first how far to go 
NORTH-EAST, then how far to go ...
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Alternate Directions
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A small data set
Head length (in mm) for each of the first 
two adult sons in 50 families
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Variance-Covariance matrix
Consider a data set consisting of p variables 
measured on n cases
How the variables change together is 
summarized by the variance-covariance matrix 
(or by the correlation matrix)
For our simple example:

> cov(head)                > cor(head)
[,1] [,2]                 [,1]   [,2]

[1,] 96.95061 54.48939  [1,] 1.0000  .7859
[2,] 54.48939 49.57918  [2,] 0.7859  1.0000
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Principal Component Analysis (PCA)
One aim of principal component analysis (PCA) 
is to reduce the dimensionality from p
variables 
This has the effect of simplifying a dataset, 
by reducing multidimensional data to a lower 
dimension (i.e. have smaller number of 
variables)
Try to explain the variance-covariance 
structure through linear combinations  
(principal components) of the (original) 
variables
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Principal Component Analysis (PCA)

Another aim is to interpret the first few 
principal components in terms of the original 
variables to give greater insight into the 
data structure
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More on PCA
Another aim is to interpret the first few 
components in terms of the original variables 
=> greater insight into data structure
Each PC accounts for a certain amount of 
the variation in the data
The 1st PC is the linear combination that 
accounts for  (‘explains’) the most variation
Subsequent PCs account for as much as 
possible of the remaining variation, while 
being uncorrelated with earlier PCs
Aubergine ...
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What is a linear combination?
Say we have 2 variables, height and length
Create new variables from these by 
summing multiples of the original values
Examples:

– V = 12*height + 4*length
– W = π*height – 4.2*length
– X = -√3*height +0.75*length
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What is a linear transformation?
The main example of a linear transformation 
is given by matrix multiplication
Say we have a matrix A, of dimension p x p
We can multiply a vector x by A to form a 
new vector Ax
For most vectors x, applying A to x changes 
both the length and the direction of the 
original vector
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Example linear transformation
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Not all vectors are the same

Usually, applying A to x changes both the 
length and the direction of the vector
But for some special vectors x, the 
result is just an expansion or contraction 
with no change of direction (except 
possibly flipped)
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Another linear transformation
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A little (more) linear algebra

In these cases, the new vector is just a 
(scalar) multiple λ of the original vector
The values λ satisfying Ax = λx are called 
eigenvalues (also characteristic values or 
latent roots) of the matrix A 
The corresponding (nonzero) vector x is 
called an eigenvector (or characteristic 
vector, latent vector) 
Usually convenient to scale eigenvectors to 
have length 1 (‘unit norm’)
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What does this have to do with PCA?
Consider the variance-covariance matrix A 
of your dataset
The eigenvectors of A provide sets of 
coefficients defining p linear functions of 
the original variables
These functions are the PCs
If A has eigenvalues λ1, λ2, ..., λp then the 
PCs have variances λ1, λ2, ..., λp and zero 
covariances (i.e. they are uncorrelated, and 
are hence giving independent information)
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Cautions
Sometimes used as a method for simplifying 
data because PCs associated with smaller 
eigenvalues have smaller variances and might 
therefore be ‘ignored’
This assumption requires caution
When variables are on different scales, it is 
customary to use the correlation matrix
(rather than the covariance matrix)
These two formulations give different results :  
the eigenvalues for the two matrices are not 
related in a simple way
Theory not simple for correlation-based PCA
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R: PCA (I)

> head.pc <- prcomp(head)
> head.pc
Standard deviations:
[1] 11.518663  3.721586

Rotation:
PC1        PC2

[1,] -0.8362568 -0.5483381
[2,] -0.5483381  0.8362568
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Principal axes
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How many PCs?
Retain the number required to explain 
some percentage of the total variation
(e.g. 90%)
Number of eigenvalues > average (1 if 
correlation matrix is used)
Look for ‘elbow’ in scree plot

– scree plot shows proportion of variance (or 
just variance) explained by each component

Compromise between these
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R: PCA (II)
> summary(head.pc)
Importance of components:

PC1    PC2
Standard deviation     11.519 3.7216
Proportion of Variance  0.905 0.0945
Cumulative Proportion   0.905 1.0000

> screeplot(head.pc,type="lines")
> head.pc$sdev^2
[1] 132.6796  13.8502
> head.pc$sdev^2/sum(head.pc$sdev^2)
[1] 0.90547862 0.09452138
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R: scree plots
head.pc
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(BREAK)
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Classification
Historically, objects are classified into groups
– periodic table of the elements (chemistry)
– taxonomy (zoology, botany)

Why classify?
– organizational convenience, convenient 

summary
– prediction
– explanation

Note:  these aims do not necessarily lead to the 
same classification; e.g. SIZE of object in 
hardware store vs. TYPE/USE of object
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Classification, cont
Classification divides objects into groups 
based on a set of values

Unlike a theory, a classification is neither 
true nor false, and should be judged largely 
on the usefulness of results (Everitt)

However, a classification (clustering) may 
be useful for suggesting a theory, which 
could then be tested
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Classification

Task: assign objects to classes (groups) on the 
basis of measurements made on the objects
Supervised: classes are predefined, want to 
use a (training or learning) set of labeled 
objects to form a classifier for classification 
of future observations (discrimination analysis)
Unsupervised: classes unknown, want to 
discover them from the data (cluster analysis)
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Cluster analysis
Addresses the problem:  Given n objects, each 
described by p variables (or features), derive 
a useful division into a number of classes

Often want a partition of objects

– But also ‘fuzzy clustering’

– Could also take an exploratory perspective

‘Unsupervised learning’

Most clustering is not statistical
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Difficulties in defining ‘cluster’
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Clustering Gene Expression Data

Can cluster genes (rows), e.g. to (attempt 
to) identify groups of co-regulated genes

Can cluster samples (columns), e.g. to 
identify tumors based on profiles

Can cluster both rows and columns at the 
same time
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Clustering Gene Expression Data

Leads to readily interpretable figures

Can be helpful for identifying patterns in 
time or space

Useful (essential?) when seeking new 
subclasses of samples

Can be used for exploratory, quality 
assessment purposes
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Visualizing Gene Expression Data
Dendrogram (tree diagram)
Heat Diagram 
– available as R function heatmap()

– http://rana.lbl.gov/EisenSoftware.htm

Need to reduce number of genes first for figures 
to be legible/interpretable (at most a few 
hundred genes, not a whole array)
A visual representation for a given clustering (e.g. 
dendrogram) is not unique
Beware the influence of representation on 
apparent structure (e.g. color scheme)
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Eisen, Michael B. et al. (1998)
Proc. Natl. Acad. Sci. USA 95, 14863-14868

Cluster visualization
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Similarity

Similarity sij indicates the strength of 
relationship between two objects i and j

Usually 0 ≤ sij ≤1 

Correlation-based similarity ranges from    
–1 to 1

Use of correlation-based similarity is 
quite common in gene expression studies 
but is in general contentious...
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Problems using correlation
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A more extreme example
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Dissimilarity and Distance

Associated with similarity measures sij bounded 
by 0 and 1 is a dissimilarity dij = 1 - sij
Distance measures have the metric property 
(dij +dik ≥ djk)
Many examples:  Euclidean (‘as the crow flies’), 
Manhattan (‘city block’), etc.
Distance measure has a large effect on 
performance
Behavior of distance measure related to scale
of measurement
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Distance example

Euclidean

Manhattan
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What distance should I use?
This is like asking:  What tool should I buy?
It depends on what similarities you are 
interested in finding
With Euclidean distance, larger values will 
tend to dominate; not useful if large value is 
simply a result of using smaller units (e.g., 
grams vs Kilos)
Can get around this (if desired) by scaling or 
standardizing variables
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Partitioning Methods

Partition the objects into a prespecified
number of groups K
Iteratively reallocate objects to clusters until 
some criterion is met (e.g. minimize within 
cluster sums of squares)
Examples:  k-means, self-organizing maps 
(SOM), partitioning around medoids (PAM; 
more robust and computationally efficient 
than k-means), model-based clustering
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Hierarchical Clustering

Produce a dendrogram (tree diagram)
Avoid prespecification of the number of 
clusters K
The tree can be built in two distinct ways: 
– Bottom-up:  agglomerative clustering
– Top-down:  divisive clustering
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Agglomerative Methods
Start with n mRNA sample (or G gene) clusters
At each step, merge the two closest clusters 
using a measure of between-cluster dissimilarity 
Examples of between-cluster dissimilarities: 
– Average linkage: average of pairwise dissimilarities
– Single-link (NN): min of pairwise dissimilarities
– Complete-link (FN): max of pairwise dissimilarities
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Between cluster distances
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Divisive Methods

Start with only one cluster

At each step, split clusters into two parts

Advantage:  Obtain the main structure of the 
data (i.e. focus on upper levels of dendrogram)

Disadvantage:  Computational difficulties when 
considering all possible divisions into two groups
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Partitioning vs. Hierarchical
Partitioning
– Advantage:  Provides clusters that satisfy some 

optimality criterion (approximately)

– Disadvantages:  Need initial K, long computation time

Hierarchical
– Advantage:  Fast computation (agglomerative)

– Disadvantages:  Rigid, cannot correct later for 
erroneous decisions made earlier
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R: clustering

A number of R packages contain functions to 
carry out clustering, including: 
– stats: hclust
– cluster (Kaufman and Rousseeuw)
– cclust
– mclust
– e1071
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Generic Clustering Tasks

Estimating number of clusters

Assigning each object to a cluster

Assessing strength/confidence of cluster 
assignments for individual objects

Assessing cluster homogeneity

(Interpretation of the resulting clusters)
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Estimating how many clusters
Many suggestions for how to decide this!

Indices based on homogeneity and/or 
separation (within and between cluster sums 
of squares)

Milligan and Cooper (Psychometrika 50:159-
179, 1985) studied performance of 30 such 
methods in a large simulation

R package fpc (Christian Hennig) has 
function  cluster.stats which computes 
many of these
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Additional methods

Model-based criteria (AIC, BIC, MDL) when 
using model-based clustering
GAP, GAP-PC (Tibshirani et al.) 
Average silhouette width (Kaufman and 
Rousseuw)
mean silhouette split (Pollard and van der
Laan)
clest (Dudoit and Fridlyand)
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Example: Bittner et al.

It has been proposed (by many) that a 
cancer taxonomy can be identified from 
gene expression experiments
31 melanomas (from a variety of 
tissues/cell lines)
7 controls
8150 cDNAs
6971 unique genes
3613 genes ‘strongly detected’
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How many clusters are present?

How many clusters are present?
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‘cluster’
unclustered

1-ρ = .54

Average linkage, melanoma only
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Issues in Clustering

Pre-processing (Image analysis and 
Normalization)
Which variables are used
Which samples are used
Which distance measure is used
Which algorithm is applied
How to decide the number of clusters K
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Issues in Clustering

Pre-processing (Image analysis and 
Normalization)
Which genes (variables) are used 
Which samples are used
Which distance measure is used
Which algorithm is applied
How to decide the number of clusters K
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Filtering Genes

All genes (i.e. don’t filter any)
At least k (or a proportion p) of the samples 
must have expression values larger than some 
specified amount, A 
Genes showing ‘sufficient’ variation
– a gap of size A in the central portion of 

the data
– a interquartile range of at least B 
– ‘large’ SD, CV, ...
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Average linkage, top 300 genes in SD
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Issues in Clustering

Pre-processing (Image analysis and 
Normalization)
Which genes (variables) are used
Which samples are used
Which distance measure is used
Which algorithm is applied
How to decide the number of clusters K
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‘cluster’
unclustered

Average linkage, melanoma only
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‘cluster’
control

unclustered

Average linkage, melanoma & 
controls

5 June 2007 Statistics and Probability Lec 8

Issues in clustering

Pre-processing
Which genes (variables) are used
Which samples are used
Which distance measure is used
Which algorithm is applied
How to decide the number of clusters K
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Complete linkage (FN)
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Single linkage (NN)
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Ward’s method (information loss)
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Issues in clustering

Pre-processing
Which genes (variables) are used
Which samples are used
Which distance measure is used
Which algorithm is applied
How to decide the number of clusters K
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Divisive clustering, melanoma only
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Divisive clustering, melanoma & controls
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Issues in clustering

Pre-processing
Which genes (variables) are used
Which samples are used
Which distance measure is used
Which algorithm is applied
How to decide the number of clusters K
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How many clusters K?

Applying several methods yielded 
estimates of K = 2 (largest cluster has 
27 members) to K = 8 (largest cluster 
has 19 members)
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cluster

unclustered

K = 2

K = 8

Average linkage, melanoma only
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Summary

Buyer beware – results of cluster analysis 
should be treated with GREAT CAUTION and 
ATTENTION TO SPECIFICS, because…

Many things can vary in a cluster analysis

If covariates/group labels are known, then 
clustering is usually inefficient


