Statistics and Probability

Bivariate data; Regression models

http://www. isrec.isb-sib.ch/~darlene/geneve/

Univariate Data (Review)

= Measurements on a sing/e variable X
= Consider a continuous (numerical) variable
= Summarizing X
- Numerically
+ Center
+ Spread
- Graphically
+ Boxplot
+ Histogram

Bivariate Data

Bivariate data are just what they sound like -
data with measurements on fwo variables;
let's call them Xand ¥

= Here, we are looking at two continuous
variables

= Want to explore the re/ationship between
the two variables

Can also look for association between two
discrete variables; we won't cover that here

Scatterplot

= We can graphically summarize a bivariate data
set with a scatterplot (also sometimes called a
scatter diagram)

= Plots values of one variable on the horizontal
axis and values of the other on the vertical
axis

= Can be used to see how values of 2 variables
tend to move with each other (/e. how the
variables are associated)

Scatterplot: positive association

Scatterplot: negative association




Scatterplot: real data example

Numerical Summary

Typically, a bivariate data set is summarized
numerically with b summary statistics

These provide a fair summary for scatterplots
with the same general shape as we just saw,
like an oval or an ellipse

We can summarize each variable separately :
X'mean, X'SD; ¥ mean, ¥ SD

But these numbers don't tell us how the values
of Xand Y vary together

Correlation Coefficient

The (sample) correlation coefficient r is
defined as the average value of the product

(Xin SUs)*(Yin SUs)
SU = standard units = (X - mean(X))/SD(X)
r is a unitless quantity
-1<r<1

r is a measure of LINEAR ASSOCIATION

R: correlation

InR:> cor(Xx,y)

Note, however, that if there are missing
values (NA), then you will get an error
message

Elementary statistical functions in R
require

- no missing values, or

- explicit statement of what to do with NA

R: NA in statistical functions

= For single vector functions (e.g. mean,
var, sd), give the argument
na.rm=TRUE

= For cor, though, there are more
possibilities for dealing with NA

= See the argument use and the methods
given there: ?cor

What ris...

r is a measure of LINEAR ASSOCIATION

The closer r is to -1 or 1, the more tightly
the points on the scatterplot are clustered
around a line

The sign of 7 (+ or -) is the same as the sign
of the slope of the line

When r = 0, the points are not LINEARLY
ASSOCIATED - this does NOT mean there
is NO ASSOCTATION




...and what ris not

ris a measure of LINEAR ASSOCTATION
rdoes NOT ftell us if Yis a function of X
rdoes NOT tell us if X causes Y

rdoes NOT tell us if ¥ causes X

rdoes NOT +tell us what the scatterplot
looks like

r~ 0: random scatter

r= 0: curved relation

r= 0: outliers

\ .
|« outliers

r~ 0: parallel lines

r= 0: different linear trends




Correlation is NOT causation

= You cannot infer that since Xand Yare
highly correlated (r close to -1 or 1) that
Xis causing a change in ¥

= ¥ could be causing X

= Xand Y could both be varying along with a
third, possibly unknown factor (either
causal or not; often ‘time’):

= Polio and soft drinks: US polio cases
tended to go up in summer, so do sales of
soft drinks => does not mean that soft
drinks cause polio

Predicting shortening velocity

= Say we are interested in getting a value for
shortening velocity (thuesen data)

= We could measure it, but that may be
difficult/expensive/impractical/efc.

= If we have a measurement on a variable that is
related fo shortening velocity - such as b/ood
glucose, say - then perhaps there would be
some way to use that measurement to estimate
or predict shortening velocity

* What relation is suggested by the scatterplot?

(Simple) Linear Regression
= Refers to drawing a (particular, special) line
through a scatterplot

= Used for 2 broad purposes:
- Explanation
- Prediction

= Equation for a line to predict y knowing x (in
slope-intercept form) looks like:

y =a+b*x
* qis called the intercept; bis the slope
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Which line?

= There are many
possible lines
that could be
drawn through
the cloud of
points in the
scatterplot ...

= How to choose?

Regression Prediction

* The regression prediction says:

when X goes up by 1 SD, predicted ¥ goes
up **NOT by 1 5D**, but by only r SDs
(down if ris negative)

= This prediction can be expressed as a
formula for a line in slope-intercept form:

predicted y = intercept+ slope ™ x,
with slope = r* SD(Y)/SD(X)
intercept = mean(Y) - slope * mean(X)




Least Squares

* @ Where does this equation come from?

A: It is the line that is 'best’ in the sense
that it minimizes the sum of the squared
errors in the vertical () direction

Y

errors

Interpretation of parameters

= The regression line has two parameters:

the s/lope and the intercept

= The regression slope is the average change

in Y when X increases by 1 unit

= The /interceptis the predicted value for ¥

when X =0

= If the slope = 0, then X'does not help in

predicting ¥ (linearly)

(BREAK)

Another view of the regression line

= We can divide the scatterplot into regions

(X-strips) based on values of X

= Within each X-strip, plot the average

value of Y (using only Y values that have X
values in the X-strip)

= This is the graph of averages

= The regression line can be thought of as a
smoothed version of the graph of averages

Scatterplot (again)

Creating X-strips




Graph of averages

Modeling Overview

= Want fo capture important features of the
relationship between a (set of) variable(s)
and one or more response(s)

= Many models are of the form
g(¥Y) = f(x) + error

= Differencesin the form of g, f and
distributional assumptions about the error
term

Linear Modeling

= A simple linear model:
E(Y) = Bo + B1x
= Gaussian measurement model:
Y=PBo+PiX+e,
where ¢ ~ N(O, c?)
= More generally:
Y=XB+eg,
whereYisnx1, Xisnxp,Bispx1,
¢ is n x 1, often assumed N(O, 52T,,,.)

Model formulas in R
= A simple mode/ formulain R looks something
like:
yvar ~ xvarl + xvar2 + xvar3
= We could write this model (algebraically) as
Y = a+b*x; + by*x, + b3*x3
= By default, an intercept is included in the

model - you don't have to include a term in the
model formula

= If you want to leave the intercept out:
yvar ~ -1 + xvarl + xvar2 + xvar3

More on model formulas
= The generic form is response ~ predictors
= The predictors can be numeric or factor
= Other symbols to create formulas with
combinations of variables (e.g. interactions)

+ to addmore variables

- to /eave out variables

 tointroduce /nteractions between two terms

* to include both interactions and the terms

(a*b is the same as a+b+a:b)
N adds all terms including interactions up to order n
1 () treats what's in () as a mathematical expression

R: linear modeling with Im

= To compute regression coefficients (intercept
and slope(s)) inR: Im(y ~ X)

= Can read ~ as 'described (or modeled) by’

= Example : to predict ventricular shortening
velocity from blood glucose:

> Im(short.velocity ~ blood.glucose)
Call:
Im(formula = short.velocity ~ blood.glucose)
Coefficients:
(Intercept) blood.glucose
1.09781 0.02196




R: using Im

You can do much more complicated modeling
with Im

The result of Im is a mode/ object which
contains additional information beyond what
gets printed

= To see some of these other quantities:

> summary(Im(short.velocity ~
blood.glucose))

R: summarizing Im

> summary(Im(short.velocity~blood.glucose))
Call:

Im(formula = short.velocity ~ blood.glucose)

Residuals:
Min 1Q Median 3 Max
-0.40141 -0.14760 -0.02202 0.03001 0.43490

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.09781 0.11748  9.345 6.26e-09 ***
blood.glucose 0.02196 0.01045 2.101 0.0479 *

Signif. codes: 0 “**** 0.001 “*** 0.01 ~*" 0.05 .7 0.1
D §

Residual standard error: 0.2167 on 21 degrees of freedom
Multiple R-Squared: 0.1737, Adjusted R-squared: 0.1343
F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

Basic model checking

= Examination of residuals
- Normality
- Time effects
- Nonconstant variance
- Curvature
= Detection of /nfluential observations
- Hat matrix

= We will do a little of this in the practical

Residuals

= There is an errorin making a regression
prediction:

error = observed Y - predicted Y

= These errors are called residuals

Hat values

= High leverage ('influential’) points are far from
the center, and have potentially greater
influence

= One way to assess points is through the Aat
values (obtained from the hat matrix H):

§ = Xb = X(XX)X'y = Hy
hi= Zjh?

= Average value of h = number of coefficients/n
(including the intercept) = p/n

Cutoff typically 2p/n or 3p/n

CIs and hypothesis tests

= With some assumptions about the error
distribution, you can make confidence
intervals or carry out Aypothesis tests:

- for the regression line
- prediction interval for future observation
- hypothesis tests for coefficients

= We will not worry about the details of these




Multiple linear regression
= You can also use more than one ‘X" variable to
predict ¥:
predicted y = a + byx; + b,x,
Example : predict ventricular shortening velocity
(Y) from blood glucose (X?) and age (X>)
The 'slopes’ by and b, are called coefficients

The prediction function for Yis still /inear in the
parameters (a, by, b,)
As in simple regression, minimize total squared

deviation from the prediction surface (instead of
a line it's a plane or higher dim. hyperplane)
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Example: cystic fibrosis
> library(I1SwR)
> data(cystfibr)
> round(cor(cystfibr),2)

age sex height weight bmp fevl rv  frc tlc
age 1.00 -0.17 0.93 0.91 0.38 0.29 -0.55 -0.64 -0.47
sex -0.17 1.00 -0.17 -0.19 -0.14 -0.53 0.27 0.18 0.02

height 0.93 -0.17 1.00 0.92 0.44 0.32 -0.57 -0.62 -0.46
weight 0.91 -0.19 0.92 1.00 0.67 0.45 -0.62 -0.62 -0.42

bmp 0.38 -0.14 0.44 0.67 1.00 0.55 -0.58 -0.43 -0.36
fevl 0.29 -0.53 0.32 0.45 0.55 1.00 -0.67 -0.67 -0.44
rv -0.55 0.27 -0.57 -0.62 -0.58 -0.67 1.00 0.91 0.59
frc -0.64 0.18 -0.62 -0.62 -0.43 -0.67 0.91 1.00 0.70
tlc -0.47 0.02 -0.46 -0.42 -0.36 -0.44 0.59 0.70 1.00

pemax 0.61 -0.29 0.60 0.64 0.23 0.45 -0.32 -0.42 -0.18
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pemax
0.61
-0.29
0.60
0.64
0.23
0.45
-0.32
-0.42

1.00

Pairwise plots of cystic fibrosis vars
> pairs(cystfibr)

R: multiple regression using Im
> attach(cystfibr)
> summary(Im(pemax~age+sex+height+weight))
Call:
Im(formula = pemax ~ age + sex + height + weight)
Residuals:
Min 1Q Median 3Q Max
-47.791 -18.683 2.747 13.413 43.190
Coefficients:
Estimate Std. Error t value Pr(G|t])
(Intercept) 70.66072 82.50906 0.856 0.402

age 1.57395 3.13953 0.501 0.622
sex -11.54392 11.23902 -1.027 0.317
height -0.06308 0.80183 -0.079 0.938
weight 0.79124 0.86147 0.918 0.369

Residual standard error: 27.38 on 20 degrees of freedom

Multiple R-Squared: 0.4413,
0.3296

F-statistic: 3.949 on 4 and 20 DF, p-value: 0.01604
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Adjusted R-squared:
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Pitfalls in regression

» ecological regression
- when the units are aggregated, for example death
rates from lung cancer vs. percentage of smokers
in cities => relationship can look stronger than it
actually is (we don't know whether it is the
smokers that are dying of lung cancer)
= extrapolation
- don't know what the relationship between X and ¥
looks like outside the range of the data
* regression effect/fallacy
- test-retest and regression toward the mean




