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Bivariate data; Regression models
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Univariate Data (Review)
Measurements on a single variable X
Consider a continuous (numerical) variable
Summarizing X
– Numerically

• Center
• Spread

– Graphically
• Boxplot
• Histogram
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Bivariate Data
Bivariate data are just what they sound like –
data with measurements on two variables; 
let’s call them X and Y
Here, we are looking  at two continuous
variables
Want to explore the relationship between 
the two variables
Can also look for association between two 
discrete variables; we won’t cover that here
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Scatterplot

We can graphically summarize a bivariate data 
set with a scatterplot (also sometimes called a 
scatter diagram)
Plots values of one variable on the horizontal 
axis and values of the other on the vertical 
axis
Can be used to see how values of 2 variables 
tend to move with each other (i.e. how the 
variables are associated)
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Scatterplot: positive association
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Scatterplot: negative association
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Scatterplot: real data example
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Numerical Summary
Typically, a bivariate data set is summarized 
numerically with 5 summary statistics
These provide a fair summary for scatterplots
with the same general shape as we just saw, 
like an oval or an ellipse

We can summarize each variable separately :   
X mean, X SD; Y mean, Y SD

But these numbers don’t tell us how the values 
of X and Y vary together
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Correlation Coefficient

The (sample) correlation coefficient r is 
defined as the average value of the product

(X in SUs)*(Y in SUs)

SU = standard units = (X – mean(X))/SD(X)

r is a unitless quantity
-1 ≤ r ≤ 1

r is a measure of LINEAR ASSOCIATION
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R: correlation

In R: > cor(x,y)

Note, however, that if there are missing 
values (NA), then you will get an error 
message
Elementary statistical functions in R 
require 

– no missing values, or
– explicit statement of what to do with NA
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R: NA in statistical functions

For single vector functions (e.g. mean, 
var, sd), give the argument  
na.rm=TRUE

For cor, though, there are more 
possibilities for dealing with NA
See the argument use and the methods 
given there:  ?cor
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What r is...

r is a measure of LINEAR ASSOCIATION
The closer r is to –1 or 1, the more tightly 
the points on the scatterplot are clustered 
around a line

The sign of r (+ or -) is the same as the sign 
of the slope of the line

When r = 0, the points are not LINEARLY 
ASSOCIATED – this does NOT mean there 
is NO ASSOCIATION
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...and what r is not

r is a measure of LINEAR ASSOCIATION
r does NOT tell us if Y is a function of X
r does NOT tell us if X causes Y
r does NOT tell us if Y causes X
r does NOT tell us what the scatterplot
looks like
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r ≈ 0: random scatter

22 May 2007 Statistics and Probability Lec 7

r ≈ 0: curved relation
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r ≈ 0: outliers

outliers
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r ≈ 0: parallel lines
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r ≈ 0: different linear trends
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Correlation is NOT causation
You cannot infer that since X and Y are 
highly correlated (r close to –1 or 1) that 
X is causing a change in Y
Y could be causing X
X and Y could both be varying along with a 
third, possibly unknown factor (either 
causal or not; often ‘time’ ):
Polio and soft drinks: US polio cases 
tended to go up in summer, so do sales of 
soft drinks => does not mean that soft 
drinks cause polio
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Predicting shortening velocity
Say we are interested in getting a value for 
shortening velocity (thuesen data)
We could measure it, but that may be 
difficult/expensive/impractical/etc.
If we have a measurement on a variable that is 
related to shortening velocity – such as blood 
glucose, say – then perhaps there would be 
some way to use that measurement to estimate 
or predict shortening velocity

What relation is suggested by the scatterplot?
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SV vs. BG
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(Simple) Linear Regression
Refers to drawing a (particular, special) line 
through a scatterplot
Used for 2 broad purposes:
– Explanation
– Prediction

Equation for a line to predict y knowing x (in 
slope-intercept form) looks like:

y = a + b*x
a is called the intercept ; b is the slope
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Which line?

There are many 
possible lines
that could be 
drawn through 
the cloud of 
points in the 
scatterplot ...

How to choose?
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Regression Prediction
The regression prediction says: 

when X goes up by 1 SD, predicted Y goes 
up **NOT by 1 SD**,  but by only r SDs
(down if r is negative)

This prediction can be expressed as a 
formula for a line in slope-intercept form:

predicted y = intercept + slope * x,

with slope = r * SD(Y)/SD(X)

intercept = mean(Y) – slope * mean(X)
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Least Squares
Q:  Where does this equation come from? 

A:  It is the line that is ‘best’ in the sense 
that it minimizes the sum of the squared 
errors in the vertical (Y) direction

*

*

*

*

*

errors

X

Y
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Interpretation of parameters

The regression line has two parameters:  
the slope and the intercept
The regression slope is the average change 
in Y when X increases by 1 unit
The intercept is the predicted value for Y 
when X = 0
If the slope = 0, then X does not help in 
predicting Y (linearly)
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(BREAK)
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Another view of the regression line

We can divide the scatterplot into regions 
(X-strips) based on values of X

Within each X-strip, plot the average 
value of Y (using only Y values that have X 
values in the X-strip)

This is the graph of averages
The regression line can be thought of as a 
smoothed version of the graph of averages
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Scatterplot (again)
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Creating X-strips
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Graph of averages
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Modeling Overview

Want to capture important features of the 
relationship between a (set of) variable(s)
and one or more response(s)
Many models are of the form

g(Y) = f(x) + error

Differences in the form of g, f and 
distributional assumptions about the error 
term
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Linear Modeling

A simple linear model:
E(Y) = β0 + β1x

Gaussian measurement model:
Y = β0 + β1x + ε,

where ε ~ N(0, σ2)
More generally:

Y = Xβ + ε,
where Y is n x 1, X is n x p, β is p x 1,
ε is n x 1, often assumed N(0, σ2Inxn)
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Model formulas in R
A simple model formula in R looks something 
like:

yvar ~ xvar1 + xvar2 + xvar3

We could write this model (algebraically) as
Y = a + b1*x1 + b2*x2 + b3*x3

By default, an intercept is included in the 
model - you don’t have to include a term in the 
model formula
If you want to leave the intercept out:
yvar ~ -1 + xvar1 + xvar2 + xvar3
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More on model formulas
The generic form is response ~ predictors
The predictors can be numeric or factor
Other symbols to create formulas with 
combinations of variables (e.g. interactions)

+ to add more variables
- to leave out variables
: to introduce interactions between two terms
* to include both interactions and the terms

(a*b is the same as a+b+a:b)
^n adds all terms including interactions up to order n
I() treats what’s in () as a mathematical expression
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R: linear modeling with lm
To compute regression coefficients (intercept 
and slope(s)) in R: lm(y ~ x)
Can read  ~ as ‘described (or modeled) by ’
Example : to predict ventricular shortening 
velocity from blood glucose:
> lm(short.velocity ~ blood.glucose)
Call:

lm(formula = short.velocity ~ blood.glucose)
Coefficients:

(Intercept)  blood.glucose  
1.09781        0.02196  
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R: using lm
You can do much more complicated modeling 
with lm

The result of lm is a model object which 
contains additional information beyond what 
gets printed

To see some of these other quantities:
> summary(lm(short.velocity ~ 
blood.glucose))
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R: summarizing lm
> summary(lm(short.velocity~blood.glucose))
Call:
lm(formula = short.velocity ~ blood.glucose)

Residuals:
Min       1Q   Median       3Q      Max 

-0.40141 -0.14760 -0.02202  0.03001  0.43490 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)    1.09781    0.11748   9.345 6.26e-09 ***
blood.glucose  0.02196    0.01045   2.101   0.0479 *
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 

` ' 1 

Residual standard error: 0.2167 on 21 degrees of freedom
Multiple R-Squared: 0.1737,  Adjusted R-squared: 0.1343 
F-statistic: 4.414 on 1 and 21 DF,  p-value: 0.0479 
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Basic model checking
Examination of residuals
– Normality
– Time effects
– Nonconstant variance
– Curvature

Detection of influential observations
– Hat matrix

We will do a little of this in the practical
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Residuals

There is an error in making a regression 
prediction:

error = observed Y – predicted Y

These errors are called residuals
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Hat values
High leverage (‘influential’) points are far from 
the center, and have potentially greater 
influence
One way to assess points is through the hat 
values (obtained from the hat matrix H):

ŷ = Xb = X(X’X)-1X’y = Hy
hi = Σjhij

2

Average value of h = number of coefficients/n 
(including the intercept) = p/n
Cutoff typically 2p/n or 3p/n
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CIs and hypothesis tests

With some assumptions about the error 
distribution, you can make confidence 
intervals or carry out hypothesis tests :
– for the regression line

– prediction interval for future observation

– hypothesis tests for coefficients

We will not worry about the details of these



8

22 May 2007 Statistics and Probability Lec 7

Multiple linear regression
You can also use more than one ‘X ’ variable to 
predict Y :

predicted y = a + b1x1 + b2x2

Example :  predict ventricular shortening velocity 
(Y) from blood glucose (X1) and age (X2)
The ‘slopes’ b1 and b2 are called coefficients
The prediction function for Y is still linear in the 
parameters (a, b1, b2)
As in simple regression, minimize total squared 
deviation from the prediction surface (instead of 
a line it’s a plane or higher dim. hyperplane)
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Example: cystic fibrosis
> library(ISwR)

> data(cystfibr)

> round(cor(cystfibr),2)

age   sex height weight   bmp  fev1    rv frc tlc pemax

age     1.00 -0.17   0.93   0.91  0.38  0.29 -0.55 -0.64 -0.47  0.61

sex    -0.17  1.00  -0.17  -0.19 -0.14 -0.53  0.27  0.18  0.02 -0.29

height  0.93 -0.17   1.00   0.92  0.44  0.32 -0.57 -0.62 -0.46  0.60

weight  0.91 -0.19   0.92   1.00  0.67  0.45 -0.62 -0.62 -0.42  0.64

bmp     0.38 -0.14   0.44   0.67  1.00  0.55 -0.58 -0.43 -0.36  0.23

fev1    0.29 -0.53   0.32   0.45  0.55  1.00 -0.67 -0.67 -0.44  0.45

rv -0.55  0.27  -0.57  -0.62 -0.58 -0.67  1.00  0.91  0.59 -0.32

frc -0.64  0.18  -0.62  -0.62 -0.43 -0.67  0.91  1.00  0.70 -0.42

tlc -0.47  0.02  -0.46  -0.42 -0.36 -0.44  0.59  0.70  1.00 -0.18

pemax 0.61 -0.29   0.60   0.64  0.23  0.45 -0.32 -0.42 -0.18  1.00
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Pairwise plots of cystic fibrosis vars
> pairs(cystfibr)
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R: multiple regression using lm
> attach(cystfibr)
> summary(lm(pemax~age+sex+height+weight))
Call:
lm(formula = pemax ~ age + sex + height + weight)
Residuals:

Min      1Q  Median      3Q     Max 
-47.791 -18.683   2.747  13.413  43.190 
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept)  70.66072   82.50906   0.856    0.402
age           1.57395    3.13953   0.501    0.622
sex         -11.54392   11.23902  -1.027    0.317
height       -0.06308    0.80183  -0.079    0.938
weight        0.79124    0.86147   0.918    0.369
Residual standard error: 27.38 on 20 degrees of freedom
Multiple R-Squared: 0.4413,     Adjusted R-squared: 
0.3296 
F-statistic: 3.949 on 4 and 20 DF,  p-value: 0.01604
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Pitfalls in regression
ecological regression
– when the units are aggregated, for example death 

rates from lung cancer vs. percentage of smokers 
in cities => relationship can look stronger than it 
actually is (we don’t know whether it is the 
smokers that are dying of lung cancer)

extrapolation
– don’t know what the relationship between X and Y 

looks like outside the range of the data
regression effect/fallacy
– test-retest and regression toward the mean


