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Chapter 1

Introduction

Microarray technologies measure mRNA abundance for thousands of se-
quences (or ‘genes’) in parallel. The high throughput nature of microarrays
has contributed to their rise in importance for studying the molecular basis
of fundamental biological processes and complex disease traits. They are
now regularly used in a variety of biological and medical studies.

Several different types of microarrays are available. Studies of gene ex-
pression using high-density short oligonucleotide arrays (or ‘chips’), such as
those made by Affymetrix or NimbleGen have become standard in a variety
of biological contexts. Examples include plant and animal studies as well
as clinical research, particularly in cancer. Of the expression measures that
have been proposed to quantify expression in these arrays, multi-chip-based
measures have been shown to perform well (Bolstad et al., 2003). As gene
expression studies increase in size, however, utilizing multi-chip expression is
more challenging in terms of computing memory requirements and time.

A strategic alternative to exact multi-chip quantification on a large chip
set is to approximate expression values based on subsets of chips. This paper
introduces extrapolation and resampling methods for approximate quantifi-
cation of expression in large studies. An examination of the properties indi-
cates that these methods can perform well compared to exact quantification.
The focus is on short oligonucleotide chips, but the same ideas apply equally
well to any array type for which expression is quantified using an entire set
of arrays, rather than for only a single array at a time.



Chapter 2

Gene expression quantification

2.1 Expression measures

Affymetrix GeneChip ® arrays contain several (usually 11 — 20) 25-mer
oligonucleotides used to measure the abundance of a given target sequence,
the perfect match (PM) probes, as well as an equal number of negative
controls, the mismatch (MM) probes. The set of probes for a given tar-
get sequence is called a probe set. A single fluorescently labeled sample is
hybridized to the array which is then scanned with a laser, yielding abso-
lute measures of fluorescence intensity. The intensities are indicative of the
amounts of mRNAs containing the target sequence in the sample, and thus
provide a means of quantifying levels of gene expression. Conversion of probe
level signal intensities to an expression measure can be viewed as a multi-
step process comprising background correction, normalization and probe set
summarization.

There exist several methods for converting the raw signal intensities to
measures of gene expression. Some methods work on chips singly, but many
quantify expression on multiple chips together as a set. Those currently
in common use include: MAS 5/GCOS (Affymetrix, 2001); the Li-Wong
Model-Based Expression Index (MBEI), implemented in the software dChip
(Li and Wong, 2001); and the Robust Multichip Average (RMA) (Irizarry
et al., 2003a) and variant gcRMA (Wu and Irizarry, 2005b), implemented
respectively in the affy (Irizarry et al., 2006) and gcrma (Wu and Irizarry,
2005a) packages of the BioConductor Project (Gentleman et al., 2004). A
relatively new algorithm produced by Affymetrix is the probe logarithmic



intensity error method (PLIER) (Affymetrix, 2005). For comprehensive in-
formation on these and other expression measures, as well as a comparison
of methods, see http://affycomp.biostat. jhsph.edu/ (Cope et al., 2004;
Irizarry et al., 2005). It is easily seen that no method performs best un-
der every circumstance, but that a few methods stand out as providing a
reasonable balance between bias and variance.

2.2 Method advantages and drawbacks in large
studies

In very large studies, consisting of hundreds or even thousands of chips, the
choice of expression measure involves consideration of not only the perfor-
mance properties of the method but also computational issues.

Single chip measures, such as MAS 5, are computationally fast and require
no additional RAM for quantification of multiple chips. Once a target scaling
value has been chosen, expression may be quantified on individual chips
without waiting for the complete set.

A problem with MAS 5 as an expression measure, though, is that the
variance is not stable for low expressed genes. This variance inflation results
in an increase in false positive differential expression calls (Cope et al., 2004;
Irizarry et al., 2005). Using a variance stabilization procedure in addition to
MAS 5 improves this aspect, but then quantification is no longer strictly a
single chip method and the benefits of single chip methods are thus reduced.

In calibration-type comparison studies with ‘known’ truth, RMA has been
demonstrated to provide an improved measure of expression over several
other measures, and has since gained in popularity as a measure of expression
(Irizarry et al., 2003a,b; Bolstad et al., 2003). The variant gcRMA (Wu and
Irizarry, 2005b) is also becoming more commonly used.

However, even with recent algorithmic improvements, for many users on
typical machines the available RAM limits the number of chips that may be
quantified using current implementations of RMA and gcRMA. The desir-
ability of using multi-chip methods on large sets of chips, combined with the
problems of hardware and software limitations, calls for a fresh approach to
gene expression quantification.



Chapter 3

Subset strategies for large
studies

In large studies, computational difficulties may preclude gene expression
quantification by multi-chip methods. The major obstacle is the amount
of RAM required for the quantification algorithm: if the user’s machine does
not have sufficient RAM for the chosen method, it simply is not possible to
obtain gene expression measures for the chip set. More efficient implemen-
tations will raise the number of chips that can be quantified on a machine
with a given amount of RAM, but some limit on the number of chips may be
reached with even the most efficient algorithm. The number of chips which
can be simultaneously quantified depends not only on machine specifications
and algorithm but also on type of chip.

Table 3.1 gives some indication of the number of chips which can be
quantified together on one machine. This study is a modification of one avail-
able at http://www.stat.berkeley.edu/~bolstad/ComputeRMAFAQ/size.
html, which assessed quantification of varying numbers of the HG U95Av2
chip on machines with 1 GB of RAM. Here, increasing numbers of chips
for two chip types, HG U95Av2 (12,625 probe sets) and HG U133A (22,283
probe sets), are quantified using justRMA (Irizarry et al., 2006) on a machine
with the Windows XP Professional operating system, a Pentium M 760 2.0
GHz processor and 2 GB of RAM. On this computer, a maximum of 425
— 450 HG U95Av2 chips or 300 — 325 HG U133A chips could be quantified
together. There are already studies larger than this in progress. As well,
newer generations of chips tend to include more probes, decreasing the num-
ber of chips that can be quantified together. Finally, as this machine may be



better equipped than the ‘typical” analyst’s desktop, these estimates may be
optimistic for many users.

Table 3.1: Time (in seconds) to compute RMA wvalues using justRMA with 2 GB

RAM. — = not done; X = failed due to memory limitations.
# chips HG U95Av2 HG U133A
100 253.21 196.67
200 322.15 399.57
300 619.85 628.97
325 - X
400 650.75 X
425 713.43 X
450 X X

Using a computer with a larger amount of RAM, as well as an operating
system with efficient memory use, raises the effective number of chips that
can be quantified as a set. However, access to very high-end machines is
outside the reach (and budget) of many analysts, who require immediate
solutions to the problem of large chip set quantification.

One work-around that has been suggested is to use a subset of chips
as a basis for multi-chip quantification of the entire set. There are several
possibilities for how this may be carried out. The aim is to produce a p x n
matrix of expression measures, one for each probe set (i = 1,...,p) in each
sample (j =1,...,n).

The methods are illustrated and compared on the ALL dataset, publicly
available from St. Jude Children’s Hospital, using the expression measure
RMA.

The RMA expression measure is based on a log scale linear additive
model (Irizarry et al., 2003a). The log, of background-corrected, quantile-
normalized PM intensities can be written as the sum of log, chip expression
value e; and log, probe affinity a; (plus random error ¢;;). In the notation of
Irizarry et al. (2003a), T'(PM;;) = e; + a; + €5, for chip i = 1,..., 1, probe
7 =1,...,J, and where T is the transformation that background corrects,
normalizes and logs the original PM intensities.

It should be emphasized that the methods described here do not depend
on RMA; they apply equally well to any multi-chip expression measure. All



analyses reported here were coded in the R (2.3.0) statistical programming
environment (R Development Core Team, 2006) along with the BioConductor
(release 1.8) packages (Gentleman et al., 2004) affy (Irizarry et al., 2006)
and multtest (Pollard et al., 2004, 2005).

3.1 Dataset description

The data consist of 335 Affymetrix HG-U95Av2 chips (12,625 probe sets)
hybridized as part of a study of pediatric acute lymphoblastic leukemia ALL
(Yeoh et al., 2002). The samples comprise 9 types of ALL along with some
Normal samples. The data are available at http://www.stjuderesearch.
org/data/ALL1/.

Although not a massive sample size, there are still enough arrays to elude
full chip set quantification on many machines. The dataset is useful as an
illustration because the number of chips is large enough to demonstrate the
utility of the method, while at the same time sufficiently small that RMA
expression values can be computed by the full multi-chip method on better
machines. The RMA values computed on all chips together provide a useful
baseline for comparison, henceforth referred to as the ‘true’ values.

3.2 Subset strategy: Extrapolation

In the Extrapolation strategy, a ‘fitting subset’ is selected from the the full
chip set for fitting the multi-chip model. The size of this subset should be
chosen so that all chips can be quantified together (i.e. should not exceed the
number of chips that the machine can accommodate). The set should also
be sufficiently large and representative that model parameters may be well
estimated. For example, in the ALL dataset the fitting subset might contain
50 chips; the remaining 335 — —50 = 285 chips comprise the ‘extrapolated’
subset. A representative sample may be obtained by stratified sampling of
the original chips, so that the fitting set contains the different types in roughly
the same proportions as the full dataset.

The model fitting results in expression measures of each probe set for
each sample in the fitting subset. The estimated model is then applied to
the remaining chips to yield expression measures on all probe sets for samples
in the extrapolated subset. The Extrapolation strategy is described here and



depicted in Figure 3.1(a).

Obtaining RMA values requires background correction, normalization
and probe set summary via the model. Background correction is a one chip
at a time operation, and therefore does not require subsetting of chips. Each
chip is therefore background-corrected with the default RMA background
correction (Irizarry et al., 2006). Quantile normalization is a multi-chip op-
eration. The extrapolation strategy computes the normalizing transform on
the fitting subset, and applies it to the extrapolated subset. First, the fit-
ting subset is quantile normalized (Bolstad et al., 2003). Then, for each
extrapolated chip, the background-corrected PM intensities are ranked and
the probes are assigned the corresponding normalizing intensity determined
from the fitting subset. Finally, the RMA model is estimated on the fitting
subset. Assuming that the probe effects a; are constant across chips, the
chip effect (expression value) may be estimated each chip as follows: (1) for
each probe j =1,...,J in a given probe set on a single chip ¢, compute the
residual r;; = T (PM,;) — a;, where a; is estimated by median polish; (2) the
median over j of the r;; gives an estimate of the expression value on chip ¢
for that probe set. (Estimates other than the median of the residuals may
instead be used in step (2) above. For example, a two-stage weighted least
squares estimate of expression has been suggested (Collin, 2004).) Opera-
tions (1) and (2) are carried out for each probe set on each chip, resulting in
RMA values for the chip in the extrapolation subset.

Extrapolation has the advantage that expression can be quantified before
all samples have been collected, thereby allowing for preliminary analyses in
the case of large studies taking place over a long period of time. In addition,
chips do not require requantification as more samples arrive (as is the case
for a full multi-chip method). However, if this strategy is used before all
chips are available, representativeness of the fitting set to the full set cannot
be assured.

Extrapolation also has some appeal as a step toward ‘context indepen-
dence’. That is, expression measures obtained by extrapolation are not de-
pendent on which particular chips are in the extrapolated set. Thus, any chip
in the extrapolated set would report the same expression values regardless
of which other chips are analyzed with it. Expression does of course depend
on the chips in the fitting set, but in some applications (e.g. pharmaceutical
studies) a set of reference standards may exist.
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Figure 3.1: Representations of Extrapolation and Single Partition strategies.

3.3 Subset strategy: Single Partition

A slight variation of the Extrapolation strategy involves partitioning the
entire chip set into a single set of subsets of similar size, or Single Partition,
shown in Figure 3.1(b). Again, subset size should be such that the chips
within a subset may be quantified with a multi-chip method. Ideally, each of
the separate subsets would also be representative of the full set. As above,
this may be achieved by stratification.

Separately for each subset, expression measures are obtained on all probe
sets via a multi-chip method (e.g. RMA) for each sample contained in the
subset. For example, the ALL dataset may be partitioned into 7 subsets
each of size about 50. The full gene expression matrix is obtained by simply
rejoining the individual subsets.

3.4 Problems with Extrapolation and Single
Partition

Extrapolation and Single Partition strategies are straightforwardly simple
and generally fast to compute. The problem of insufficient RAM is avoided by
choosing the fitting or partition subset size to be smaller than the maximum
number of chips the machine can simultaneously process.

One adverse property of the Extrapolation strategy is that the fitting



subset characteristics are ‘locked in’, then propagated to the extrapolated
subset. This aspect is problematic if the fitting subset is not representative
of the full set, or if it is flawed in some other, perhaps unknown, way. The
Single Partition strategy has this problem as well although to a lesser degree:
there is ‘lock in” but no propagation, as each subset is quantified separately
from the others.

Ideally, the expression values obtained by a suitable subsetting strategy
would match those produced by multi-chip quantification of the full chip
set. However, expression values depend on the specific chips contained in the
subsets. Both the Extrapolation and Single Partition strategies exhibit some
sensitivity to the choice of subset.

Figure 3.2 illustrates the variability in measured expression across probe
sets for a single chip quantified in different partitions. A partition was gen-
erated by dividing the full chip set into 7 subsets of size approximately 50
(6 subsets of size 48 and 1 of size 47), either at random (panels (a) — (c))
or with stratification based on subtype (panels (d) — (f)). Single Partition
expression measures were computed as described above. The process was
repeated several times, yielding additional sets of Single Partition expression
values.

The plots compare for a single chip the RMA values (log, scale) computed
from 6 different Single Partitions to the true values. In each of the 6 subplots,
the difference between the partition value and the true value is plotted against
the true value. If a partition produced the true expression values, then the
points would lie on the horizontal line centered at 0 (dashed gray line).

It is readily seen that Single Partition values deviate from the true val-
ues, sometimes markedly. Variability across partitions of expression values
for the same chip can be seen by comparing the subplots. It is also seen
that there can be substantial bias within Single Partitions. Figures 3.2(a) —
(e) show pronounced bias, whereas Figure 3.2(f) shows relatively little bias.
The patterns are similar for stratified and unstratified partitions but there
is typically less variability with stratification, occasionally drastically less
(Figure 3.2(f)).

The issues of variability and bias with both the Extrapolation and Single
Partition strategies are sufficiently serious to discourage their widespread use.
However, with modification based on averaging the strategies become more
viable.
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Figure 3.2: Difference between Single Partition RMA values and True RMA wvalues
vs. True for a single chip from 6 different Single Partitions. Each point represents
a probe set. Solid line is a loess fit.

3.5 Subset strategy: Extrapolation Averag-
ing

The potentially poor performance of extrapolation may be alleviated by
drawing on the power of averaging. To diminish ‘lock-in’, we may perform the
subsetting and extrapolation step multiple times and average the resulting
expression measures, a strategy we refer to as Eztrapolation Averaging (EA).
Thus, we would expect that a few unfortunate fitting subsets should not have
a strong adverse impact on the final expression measures, which are averaged
from extrapolations from multiple instances of fitting sets. This strategy will
be most practical if the majority of chips for the complete study are already
available (and not, for example, in the early stages).

11



3.6 Subset strategy: Partition Resampling

Various partitions are possible for any given (full) chip set and subset size.
The Single Partition strategy selects, randomly or deliberately, only one of
the many possible partitions as a basis for computing expression values. We
can instead take advantage of the power of averaging with an alternative
strategy that will be referred to as Partition Resampling (PR).

The total number of possible partitions of a large set will be very large,
and infeasible to enumerate and use in computation of expression. We may,
however, sample a subset of the possible partitions as a basis for expression
quantification. Partition Resampling applies the Single Partition strategy on
multiple randomly generated partitions, then averages the resulting expres-
sion matrices across partitions to produce its gene expression matrix.

12



Chapter 4

Partition Resampling and true
values

Conceptually, the EA and PR strategies work in a similar fashion. Expres-
sion is based on an average of expression values for the given chip based on
different subsets. The strategies differ in detail though: EA uses one model
within a dataset, while PR uses different models for the different subsets
within a dataset.

PR is very simple to implement and automate, as it only requires an
implementation of the desired quantification algorithm and a random number
generator. For EA, the quantification algorithm needs to be reorganized
so that the multi-chip aspects may be reduced to single chip operations.
Memory management can also be more problematic.

In terms of performance, PR and EA appear to behave broadly similarly.
Thus, detailed results are only shown for PR. To avoid an overly optimistic
assessment, results here are based on random rather than stratified samples.
Appropriate stratification generally provides faster convergence to the true
expression values.

4.1 Expression values

The initial examination compares expression values from full data (true val-
ues) to those from PR for varying number of resampled partitions and subsets
of varying size. For each combination of subset size and number of resampled
partitions, PR-RMA values are obtained for each probe set on each chip. As

13



a reminder, each probe set entry in the PR-RMA expression matrix for a
chip contains the average of the RMA values from the resampled partitions.

Results presented here are for partition subset size 48 (with one subset of
size 47), and number of resampled partitions equal to 1 (i.e. Single Partition),
5, 10, 20, 50 and 100. Results are illustrated for one chip, which typifies the
findings from the set; the same gross trend occurs for chips throughout the
entire ALL dataset.
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Figure 4.1: Difference between PR-RMA values and True RMA values vs. True for
a single chip for varying number of resamples. Fach point represents the pair of
values for a probe set.

Figure 4.1 displays the difference between PR-RMA values and true val-
ues versus true values for the 6 resampling values. The subpanels are plotted
on the same scale and include reference lines to facilitate comparison. The
decrease in the deviation from true values between a single partition (panel
(a)) and the mean of even as few as 5 resamplings is striking. The variability
is further reduced with increased resampling, although at a decreasing rate.
Ignoring the slight dependence between chips within the same partition sub-
set induced by the finite chip set size, we may consider /n as a benchmark
for the decrease in variability of the mean (here n is the number of resampled
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partitions). The observed narrowing of the cloud of points appears roughly
consistent with this rate.
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Figure 4.2: Histograms of differences between PR-RMA and True values across probe
sets of a single chip with varying number of resamples.

In addition to lower variability, there is also an apparent ‘central ten-
dency’ behavior of PR-RMA values with increasing number of resampled
partitions (Figure 4.2). Expression values that are approximately unbiased
should appear as a histogram roughly symmetric around 0. The marked
asymmetry in the Single Partition (panel (a)) decreases with additional re-
sampling (panels (b) — (f)).

4.2 Test statistic and p-value comparison

We have seen that quantification by the subset approximations considered
here results in expression values which vary somewhat from the values that
would be obtained by full multi-chip computation. However, what may well
be of greater interest is the extent to which subsequent inference based on the
approximate values is affected. If the conclusions drawn from the data are the
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same for both true and approximate expression values, then the variability
of individual expression values due to approximation is of little import.

There are several types of inference that might be made in a gene ex-
pression study. These include identification of differentially expressed genes,
ranking of genes warranting further examination, choice of genes for building
a classifier, and identification of novel subtypes. As an example, we consider
here the problem of identifying genes differentially expressed between ALL
types.

There are many possible test statistics to use for identifying differentially
expressed genes. As this is not a study on the performance of such test
statistics but rather an examination into the performance of the PR-RMA
approximation compared to exact full RMA, a simple to compute criterion
with acceptable operating characteristics suffices here. We consider 12 two-
sample t-tests: subtype versus normal (9 different subtypes), and 3 other
tests with different sample sizes (large versus large, small versus small, large
versus small). Because rather similar patterns occurred for all tests, results
are shown here for only one.

We are unable to examine true and false positive identifications of dif-
ferential expression by PR-RMA, as the true status is unknown. However,
we are able to compare t-statistics and corresponding nominal, unadjusted
p-values obtained from PR-RMA with the ‘true’ RMA values obtained on
the full data. In this way, we can see whether the same inference regarding
differential expression would be made by both the approximate and exact
methods.

The full data two-sample t-statistic is computed in the standard way
based on full RMA values. The PR-RMA t-statistic is similarly obtained,
but is instead based on the PR-RMA gene expression matrix. It should
be noted that the PR-RMA t (and corresponding p-value) is not obtained
by averaging the individual partition t-values across partitions. Rather, the
PR-RMA expression matrix is an average across partitions; the PR-RMA ¢
is based on these (averaged across partitions) expression values.

Figure 4.3 shows the comparison between the PR-RMA based t-statistic
and the ‘true’ (full data) ¢ for the t-test comparing subtype 7" — ALL to
Normal. If the PR-RMA based t were exactly equal to the full data RMA t,
all points would lie on the horizontal line at 0. Agreement clearly increases
with the number of resamples.

Since inference is often based on (rankings of) p-values, it is useful to
look at p-value agreement as well. As above, note here that the PR-RMA

16
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Figure 4.3: Difference between PR-RMA t-statistics and True t vs. True t for the
test subtype T — ALL vs. Normal for varying number of resamples. FEach point
represents a probe set.

p-value is not an average of p-values; it is the p-value corresponding to the
PR-RMA t-statistic. A specific example of the general trend of (—logy,)
p-value agreement observed in the 12 tests is shown in Figures 4.4 (nomi-
nal, unadjusted p-value) and 4.5 (p-value after Bonferroni adjustment; other
multiplicity adjustments give very similar results).

In Figure 4.4, the probe sets corresponding to the points to the right of the
vertical line at 2 and above the horizontal line at 2 are those which are found
significant (nominally at level o = 0.01) with exact full data quantification,
but not in the approximation — these probe sets are the ones that would be
identified as differentially expressed with full data RMA, but are missed with
PR-RMA (false negatives). Similarly, probe sets corresponding to points in
the region to the left of the vertical line at 2 (not significant at a = 0.01 with
full data RMA) and above the horizontal line at 2 are false positives.

False negative and false positive numbers at two thresholds are indicated
on each subplot of Figure 4.4, and for a threshold of —log,,(.05) ~ 1.3 in
Figure 4.5. For example, in panel (a) (Single Partition) there are 320 false
negatives and 34 false positives at a —log;, threshold of 2 (o = 0.01), and
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nominal, unadjusted values. Each point represents a probe set.

140 false negatives and 8 false positives at a —log;, threshold of 4 (a =
0.0001).

Increasing the number of partitions for a given subset size tends to reduce
the total number of false negative and false positive results. In addition, the
false negative and false positive rates tend to become less mismatched with
an increasing number of resampled partitions. This finding indicates that
there is decreased bias with increased resampling, with points falling above
or below the diagonal due mainly to sampling variability.

Table 4.1 summarizes different error rates for this test for unadjusted and
adjusted p-values. The rates are defined for a given significance threshold as
follows: v = number of PR significant genes but not true/number of true non-
signficant genes; FDR = number of PR significant genes but not true/number
of PR significant; § = number of PR nonsignificant genes/number of true
significant genes. For example, for a Single Partition with a cutoff of 0.0001,
of the 12,625 probe sets there are 668 true significant genes, 140 of which
are also PR significant, 8 PR significant genes which are not true significant,
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Figure 4.5: —log,; PR-RMA p-value vs. —log,, True p for the test subtype T — ALL
vs. Normal for varying number of resamples. Numbers indicate how many points are
in the false negative and false positive regions for a threshold of p = 0.05. p-values
are Bonferroni-adjusted. Each point represents a probe set.

and a total of 536 PR significant genes. The corresponding rates are a@ =
8/(12,625 — 668) = 0.00067, FDR = 8/536 = 0.015, and § = 140/668
0.21.

In this instance the Single Partition had slightly lower o and FDR values
than PR. However, these rates are subject to random fluctuation so that
for a different Single Partition they could instead turn out to be higher.
In addition, the lower false positives are at the cost of a greatly increased
false negative rate (reduced power). We therefore cannot rely on Single
Partition to provide smaller false positive/discovery rates or a reasonable
tradeoff between false positive and false negative results.

In all cases, the false negatives and false positives tend to occur quite
close to the threshold. Thus while agreement is not perfect at the threshold,
we can be reasonably confident of agreement for probe sets at the top of the
differential expression list.
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Table 4.1: Error rates for A: unadjusted p-values (cutoff = 0.0001; # True sig.
668); B: Bonferroni-adjusted p-values (cutoff = 0.05; # True sig. = 353)

# partitions # PR sig. Q FDR I}

A: for nominal, unadjusted p-values

1 536 0.00067 0.015 0.21

5 630 0.0016  0.030 0.085

10 653 0.0018 0.032 0.054

20 648 0.0014 0.026 0.055

50 660 0.0012 0.021 0.033

100 674 0.0015 0.027 0.018
B: for Bonferroni-adjusted p-values

1 279 0.00024 0.011 0.22

343 0.0014 0.050 0.076

10 353 0.0012 0.042 0.042

20 346 0.00090 0.032 0.051

50 346 0.00073 0.026 0.048

100 355 0.00090 0.031 0.028
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Chapter 5

Conclusion

Exact multi-chip expression quantification on full chip sets is not always fea-
sible in large studies. Currently in progress are several studies large enough
to prohibit exact calculations (e.g. for RMA). The strategies introduced here
provide useful approximations to the exact value based on the full chip set.

Although there are situations for which (single) Extrapolation may be
the most attractive strategy, the averaging strategies (Partition Resampling
and Extrapolation Averaging) behave more favorably in general.

PR and EA enjoy the reduced variability obtained through averaging
along with an apparent bias reduction. A common criticism of resampling
methods is that, based on a single sample, they should not be used to gener-
alize to a larger population. This objection is less relevant here, as interest
resides mainly in approximating the full chip set (empirical) ‘truth’; that is,
there is no larger set of chips for which it is desired to infer expression values.

Here, we have considered fixed numbers of resamplings. However, by
adoption of a suitable convergence criterion, the methods can be readily
modified to allow the procedure to stop automatically once ‘enough’ resam-
plings are selected. Examples of possible stopping criteria include correlation
or variability between previous and current values of expression across the
dataset.

The main user-supplied ingredients to PR are the within partition sub-
set size and stopping rule (number of resampled partitions or convergence
criterion). No comprehensive numerical or theoretical study has been made
on this aspect. As a rough guide, a subset size of around 50 — 100 seems
workable, depending on chip type, chosen expression measure and machine
capabilities. Given the closeness of results for 50 and 100 resamples, 50 re-
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sampled partitions may be sufficient in many instances to produce acceptable
expression values; more may be desirable if the fully quantifiable subset size
is small. Further study along with widespread adoption of the method should
produce more insight into properties and tradeoffs so that these guidelines
may be suitably refined.

Both resampling and within partition computing are inherently parallel
operations, not dependent on other resamples or within partition subsets.
Thus, PR is readily parallelizable, bringing gains in speed to multi-chip ex-
pression quantification in large studies.

Ideally, improvements in algorithms for exact computation would lessen
the need for approximation strategies. However, an additional benefit of
using a resampling strategy is that it can provide an estimate of expression
measure standard error, not readily obtained otherwise. Such an estimate
may prove useful in sensitivity and robustness studies.

PR is a readily applicable general tool that provides an immediate pow-
erful and practical solution to the problem of multi-chip gene expression
quantification for arbitrarily large sample sizes. EA requires more attention
to the details of the quantification algorithm (e.g. RMA or gcRMA). The
favorable properties of PR and EA recommend either as a method of choice
when exact, full chip set methods are computationally infeasible. Software
implementing Partition Resampling and Extrapolation Averaging is under
development as an R package for the BioConductor project.
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