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Modeling overview

Want to capture important features of the relationship between a (set
of) variable(s) and one or more response(s)

Many models are of the form

g(Y ) = f (x) + error

Differences in the form of g , f and distributional assumptions about
the error term
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Examples of models

Linear: Y = β0 + β1x + ε

Linear: Y = β0 + β1x + β2x2 + ε

(Intrinsically) Nonlinear: Y = αxβ
1 xγ

2 xδ
3 + ε

Generalized Linear Model (e.g. Binomial): log p
1−p = β0 + β1x + β2x2

Proportional Hazards (in Survival Analysis): h(t) = h0(t) exp(βx)
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Linear modeling

A simple linear model: E (Y ) = β0 + β1x

Gaussian measurement model: Y = β0 + β1x + ε, ε N(0, σ2)

More generally: Y = Xβ + ε, where Y is n × 1, X is n × p, β is
p × 1, ε is n × 1, often assumed N(0, σ2In×n)
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Analysis of designed experiments

An important use of linear models

Define a (design) matrix X so that for response variable Y :

E (Y ) = Xβ,

where β is a vector of parameters (or contrasts)

Many ways to define design matrix/contrasts
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Model fitting

For the standard (fixed effects) linear model, estimation is usually by
least squares

Can be more complicated with random effects or when x-variables are
subject to measurement error as well
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Model checking

Examination of residuals

– Normality
– Time effects
– Nonconstant variance
– Curvature

Detection of influential observations
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Linear regression model (again)

Linear model

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε, ε ∼ N(0, σ2)

Another way to write this:

Y ∼ N(µ, σ2), µ = β0 + β1x1 + β2x2 + · · ·+ βkxk

Suitable for a continuous response

NOT suitable for a binary response
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Modified model

Instead of modeling the response directly, could instead model the
probability of ‘1’

Problems:

– could lead to fitted values outside of [0, 1]
– normality assumption on errors is wrong

Instead of modeling the expected response directly as a linear
function of the predictors, model a suitable transformation

For binary data, this is generally taken to be the logit (or logistic)
transformation
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Logit transformation

logit(p) = log p
1−p = β0 + β1x1 + β2x2 + · · ·+ βkxk

Therefore,

p(x1, . . . xk) =
exp(β0 + β1x1 + β2x2 + · · ·+ βkxk)

1 + exp(β0 + β1x1 + β2x2 + · · ·+ βkxk)

The parameter βk is such that exp(βk) is the odds that the response
takes value 1 when xk increases by one, when the remaining variables
are constant

Estimate parameters by maximum likelihood
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Binary response in a linear model

In a standard linear model, the response variable is modeled as a
normally distributed

However, if the response variable is binary , it does not make sense to
model the outcome as normal

Generalized linear models (GLMs) are an extension of linear models to
model non-normal response variables

We are using logistic regression for a binary response
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Generalized linear models: some theory

Allows unified treatment of statistical methods for several important
classes of models

Response Y assumed to have exponential family distribution:

f (y) = exp[a(y)b(θ) + c(θ) + d(y)]

For a standard linear model
Y = β0 + β1x1 + . . .+ βkxk + ε, with ε ∼ N(0, σ2)

The expected response is E [Y | x ] = β0 + β1x1 + . . .+ βkxk

Let η denote the linear predictor η = β0 + β1x1 + . . .+ βkxk

For a standard linear model, E [Y | x ] = η

In a generalized linear model , there is a link function g between η and
the expected response:

g(E [Y | x ]) = η

For a standard linear model, g(y) = y (identity link)
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Link function

When the response variable is binary (with values coded as 0 or 1),
then E [Y | x ] = P(Y = 1 | x)

A convenient function in this case is
E [Y | x ] = P(Y = 1 | x) = eη

1+eη

The corresponding link function (inverse of this function) is called the
logit

logit(x) = log(x/(1− x))

Regression using this model is called logistic regression
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Link function: examples

Family Name
Link binomial Gamma gaussian inverse.gaussian poisson
logit D
probit •
cloglog •
identity • D •
inverse D
log • D
1/mu^2 D
sqrt •
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Analogous to linear regression

The logit function g has many of the desirable properties of a linear
regression model

Mathematically convenient and flexible

Can meaningfully interpret parameters

Linear in the parameters

A difference: Error distribution is binomial (not normal)
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Fitting the model

For linear regression, typically use least squares

When outcome dichotomous, the ‘nice’ statistical properties of least
squares estimators no longer hold

The general estimation method that leads to least squares (for
normally distributed errors) is maximum likelihood
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Maximum likelihood estimation

Likelihood: f (xi ) = p(xi )
yi [1− p(xi )]1−yi

Assuming independent observations, the likelihood l(β) =
∏n

i=1 f (xi )

log likelihood
L(β) = log[l(β)] =

∑n
i=1(yi log(p(xi )) + (1− yi ) log(1− p(xi )))

To find β that maximize the log likelihood, differentiate wrt each βi

and set the derivative equal to 0

In linear regression these equations are easily solved

In logistic regression, these are nonlinear in β and are solved iteratively
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Assessing model fit

In linear regression, an anova table partitions SST , the total sum of
squared deviations of observations about their mean, into two parts:

– SSE , or residual (observed - predicted) sum of squares
– SSR, or regression sum of squares

Large SSR suggests the explanatory variable(s) is(are) important

Use same guiding principle in logistic regression: compare observed
response to predicted response obtained from models with/without
the variable(s)

Comparison based on log likelihood function
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Deviance

In standard linear models, estimate parameters by minimizing residual
sum of squares

(Equivalent to ML for normal model)

In GLM, estimate parameters by ML

The deviance is (proportional to) 2× l

(Analogous to SSE)

Obtaining ‘absolute’ measure of goodness of fit depends on some
assumptions that may not be satisfied in practice

Usually focus on comparing competing models

When the models are nested , can carry out likelihood ratio test
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Comparing models

In linear regression, consider coefficient significant if (squared)
standardized value β̂/SE (β̂) is ‘large’

Can also do this for logistic regression (Wald test), but there are
some problems with it

Preferred approach: likelihood ratio test

Deviance D = −2
∑n

i=1 yi log
(

p̂i
yi

)
+ (1− yi ) log

(
1−p̂i
1−yi

)
To compare models, compute G = D(submodel)− D(bigger model)

Under the null (i.e. the submodel), G ∼ χ2 with df = difference in
the number of estimated parameters
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