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Modeling overview

m Want to capture important features of the relationship between a (set
of) variable(s) and one or more response(s)

m Many models are of the form
g(Y) = f(x) + error

m Differences in the form of g, f and distributional assumptions about
the error term
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Examples of models

Linear: Y = B9+ fix + ¢

Linear: Y = By + Bix + fox? + €
(Intrinsically) Nonlinear: ¥ = ax{xjx{ +

Generalized Linear Model (e.g. Binomial): log 1 L = Bo + P1x + Boxz

Proportional Hazards (in Survival Analysis): h(t ) ho(t) exp(5x)
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Linear modeling

m A simple linear model: E(Y) = (B + (1x
m Gaussian measurement model: Y = g + B1x + ¢, ¢ N(0,0?)

m More generally: Y = X3+ ¢, where Yisnx 1 Xisnxp, Bis
p <1, eis nx1, often assumed N(0,02/,x,)
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Analysis of designed experiments

m An important use of linear models

m Define a (design) matrix X so that for response variable Y

E(Y)=Xp,
where 3 is a vector of parameters (or contrasts)

m Many ways to define design matrix/contrasts
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Model fitting

m For the standard (fixed effects) linear model, estimation is usually by
least squares

m Can be more complicated with random effects or when x-variables are
subject to measurement error as well
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Model checking

m Examination of residuals

— Normality

— Time effects

— Nonconstant variance
— Curvature

m Detection of influential observations
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Linear regression model (again)

m Linear model
Y =Po+fixi+ Boxa+ -+ B+, e~ N(0,0%)
m Another way to write this:
Y ~ N(p,0%), 1= Fo+ Brxa+ Baxz + - + Brx

Suitable for a continuous response

NOT suitable for a binary response
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Modified model

m Instead of modeling the response directly, could instead model the
probability of ‘1’
m Problems:

— could lead to fitted values outside of [0, 1]
— normality assumption on errors is wrong

m Instead of modeling the expected response directly as a linear
function of the predictors, model a suitable transformation

m For binary data, this is generally taken to be the logit (or logistic)
transformation
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Logit transformation

m logit(p) = log t2; = Bo + Brxa + Box2 + -+ + Brx

m Therefore,

p(x i) = exp(fBo + fix1 + Baxa + -+ - + Brxk)
1y Xk 1+eXP(5o+51x1+52x2+...+5kxk)

m The parameter [y is such that exp((k) is the odds that the response
takes value 1 when xi increases by one, when the remaining variables
are constant

m Estimate parameters by maximum likelihood
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Binary response in a linear model

m In a standard linear model, the response variable is modeled as a
normally distributed

m However, if the response variable is binary, it does not make sense to
model the outcome as normal

m Generalized linear models (GLMs) are an extension of linear models to
model non-normal response variables

m We are using logistic regression for a binary response
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Generalized linear models: some theory

Allows unified treatment of statistical methods for several important
classes of models

Response Y assumed to have exponential family distribution:

f(y) = expla(y)b(0) + c(6) + d(y)]

For a standard linear model

Y =060+ Pix1+ ...+ Bixk + €, with € ~ N(0,02)
The expected response is E[Y | x| = Bo + fix1 + ... + Brxk
Let n denote the linear predictor n = By + Bix1 + ... + Brxk
For a standard linear model, E[Y | x] =7

In a generalized linear model, there is a link function g between 7 and
the expected response:

g(E[Y [x]) =n
For a standard linear model, g(y) = y (identity link)
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m When the response variable is binary (with values coded as 0 or 1),
then E[Y | x]=P(Y =1]|x)
m A convenient function in this case is

EY [x]=P(Y=1]x) =55

m The corresponding link function (inverse of this function) is called the
logit

m logit(x) = log(x/(1 — x))

m Regression using this model is called logistic regression
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Link function: examples

Family Name
Link binomial Gamma gaussian inverse.gaussian poisson
logit D
probit °
cloglog °
identity
inverse
log . D
1/mu~2 D
sqrt .

°
O
°

Logistic regression (EPFL) Applied Statistics 11 Nov 2010 14 /20



Analogous to linear regression

The logit function g has many of the desirable properties of a linear
regression model

m Mathematically convenient and flexible
m Can meaningfully interpret parameters
m Linear in the parameters
[

A difference: Error distribution is binomial (not normal)
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Fitting the model

m For linear regression, typically use least squares

m When outcome dichotomous, the ‘nice’ statistical properties of least
squares estimators no longer hold

m The general estimation method that leads to least squares (for
normally distributed errors) is maximum likelihood
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Maximum likelihood estimation

m Likelihood: f(x;) = p(x;)¥[L — p(x;)]}
m Assuming independent observations, the likelihood /(3) = []7_; f(x:)
m log likelihood
L(B) = log[/(B)] = 3_i_1(vi log(p(xi)) + (1 — yi) log(1 — p(xi)))
m To find @ that maximize the log likelihood, differentiate wrt each §;
and set the derivative equal to 0

m In linear regression these equations are easily solved

m In logistic regression, these are nonlinear in 3 and are solved iteratively
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Assessing model fit

m In linear regression, an anova table partitions SST, the total sum of
squared deviations of observations about their mean, into two parts:

— SSE, or residual (observed - predicted) sum of squares
— SSR, or regression sum of squares

m Large SSR suggests the explanatory variable(s) is(are) important

m Use same guiding principle in logistic regression: compare observed
response to predicted response obtained from models with /without
the variable(s)

m Comparison based on log likelihood function
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Deviance

In standard linear models, estimate parameters by minimizing residual
sum of squares

(Equivalent to ML for normal model)
In GLM, estimate parameters by ML
The deviance is (proportional to) 2 x /
(Analogous to SSE)

Obtaining ‘absolute’ measure of goodness of fit depends on some
assumptions that may not be satisfied in practice

Usually focus on comparing competing models

m When the models are nested, can carry out likelihood ratio test

Logistic regression (EPFL) Applied Statistics 11 Nov 2010 19 /20



Comparing models

m In linear regression, consider coefficient significant if (squared)
standardized value 3/SE(p) is ‘large’

m Can also do this for logistic regression (Wald test), but there are
some problems with it

m Preferred approach: likelihood ratio test
m Deviance D = —-2>"7 , yjlog <%> + (1 —y;)log (1:—5’)
m To compare models, compute G = D(submodel) — D(bigger model)

m Under the null (i.e. the submodel), G ~ x? with df = difference in
the number of estimated parameters
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