ANOVA - Model Selection

Applied Statistics

4 Nov 2010
Could fit all possible effects into a model
- BUT: a model that is too big will be difficult to understand

Instead, remove effects that are not important

**HOW???

A good model should
- fit the data reasonably well
- be as simple as possible for its intended purpose (e.g. descriptive, explanatory, prediction)
- be interpretable

Tradeoff: between *fit* and *complexity* of the model
Criteria for Model Comparison

- *F*-tests for individual effects
 - **Beware:** the *order* of the terms in the model can make a difference (nonorthogonal designs)

- Information Criteria (AIC, BIC)
 - $\text{xIC} = \text{Deviance} + \text{Complexity}$
 - *Deviance* = $-2 \times \log \text{Likelihood} = \text{measure of goodness of fit}$
 - *Complexity*: gives a *penalty* for including more parameters
Information Criteria

- Better model fit \Rightarrow lower deviance
- More parameters \Rightarrow bigger complexity/penalty
- \Rightarrow ‘best’ model has *lowest value* of the IC
- Akaike Information Criterion (AIC) $= -2 \ln L + 2p$
 - tends to select larger models
- Bayesian Information Criterion (BIC) $= -2 \ln L + p \ln(n)$
 - tends to select smaller models
 - may overpenalize factors with many levels
Choosing a Model

- Compare models using F-tests, AIC, BIC
- If the number of variables is small enough, could compare all possible models
- Usually this is not practical, use automatic procedures
 - forward selection
 - backward elimination
 - stepwise selection
Marginality Restriction

- Lower order terms are *marginal* to higher order terms
- Need to keep terms in the model that are marginal to other terms
 - if include *polynomial* term e.g. \(x^2 \), need to also keep \(x \) in the model
 - if include *interaction* term, need to keep all primary variables and lower order interactions in the model
- **Forward Selection**
 - start with *no* variables in the model
 - in successive steps, add in the ‘best’ unselected variable/term
 - stop when have the best model according to the chosen criterion, *e.g.* F, AIC, BIC

- **Backward Elimination**
 - start with *all* variables/terms in the model
 - in successive steps, take out the ‘worst’ included variable/term
 - stop when have the best model according to the chosen criterion, *e.g.* F, AIC, BIC
Stepwise Selection

- start with the *full* model
- use Backward Elimination to see if any term can be removed
- use Forward Selection to see if a term can be added
- iterate (Backward - Forward - Backward - etc.)
- stop when model doesn’t change
Selection Procedures: Problems

- The methods are *automatic*
 - do not take into account scientific knowledge
 - do not take effect size into account – can include a significant variable with an effect size that is not interesting or important
 - can lead to model that are not meaningful or unrealistic

- Not guaranteed to find the optimum
 - Stepwise: try multiple times, starting with a different model each time

- *All models are wrong, but some are useful*
HOWTO: Model Selection

- Use scientific/problem-specific knowledge to suggest important variables/terms for potential inclusion
- Then, can try automatic procedures (stepwise selection, F-tests, etc.)
- Observe marginality
- If you use F-tests/ANOVA tables, remember that the order of inclusion of variables matters – try different orders
- Better to use `stepAIC` function in the R package MASS
- (see handout, Section 6.8 in the MASS book)
Important model assumptions:
- Independent observations
- Normally distributed errors
- Constant error variance
- Additive effects

If the assumptions do not hold (at least approximately), then the results of the analysis will generally not be meaningful

⇒ **Check assumptions!!**
In addition to the *exploratory plots* you make at the beginning of the analysis, you will also need *diagnostic plots* in the model assessment phase.

- There should not be any *structure* in the residuals.
- Plot residuals against predicted values, variables in the model, variables *not* in the model (e.g. to see if some important variable is left out, assess dependence), normal QQ-plot.
- Look for outliers, constant variance, patterns, normality.