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ANOVA
Stands for ANalysis Of VAriance

But it’s a test of differences in means
The idea:

The Observations yij

Treatment group

i = 1 i = 2 … i = k

means:  m1 m2 … mk

yk, nk…y2, n2y1, n1

…………

yk,2…y22y12

yk,1…y21y11
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The ANOVA table
The analysis is usually laid out in a table 

For a one-way layout (where the response is 
assumed to vary according to grouping on one 
factor):

Σ(yij-m)2n-1Total

SSE/(n-k)Σ(yij-mi)2n-kError

*MST/MSESST/(k-1)Σ(mi-m)2k-1Treatment
p-valFMSSSdfSource

m = overall mean, mi = mean within group i

Sum of Squares

The two-sample t-test tests for equality of 
the means of two groups.
We could express the observations as:

Where the Eij are assumed to be N(0,σ2)
H : μ1 = μ2

ijiij EX += μ 2,1=i
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Sum of Squares

This can also be written as:

– μ could be seen as overall mean
– αi as deviation from μ in group i

Model is overparameterized
– Uses more parameters than necessary
– Necessitates some constraint, e.g. Σiαi =0

ijiij EX ++= αμ 2,1=i

Sum of Squares

Goal: test difference between means of two 
(or more) groups
– Between SS measures the difference

The difference must be measured relative to 
the variance within the groups
– Within SS

F-test: considers the ratio of B/W
The larger F is, the more significant the 
difference
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The ANOVA Procedure

Subdivide observed total sum of squares 
into several components
Pick appropriate significance point for a 
chosen Type I error α from an F table
Compare the observed components to test 
the NULL hypothesis

Comments

Generalizes to any number of groups
ANOVAs can be classified in various ways, e.g.
– fixed effects models
– mixed effects models
– random effects model
– For now we consider fixed effect models

• Parameter αi is fixed, but unknown, in group i

ijiij EX ++= αμ
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One-Way ANOVA
One-Way fixed-effect ANOVA
Setup and derivation
– Like two-sample t-test for g number of 

groups
– Observations (ni observations, i=1,2,…,g)

– Using overparameterized model for X

– Eij assumed N(0,σ2), Σniαi = 0, αi fixed in 
group i

inii XXX ,,, 21 K

ijiij EX ++= αμ inj ,,2,1 K= gi ,,2,1 K=

One-Way ANOVA

– Null Hypothesis H0 is: α1 = α2 = … = αg = 0
– Total sum of squares is

– This is subdivided into B and W
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One-Way ANOVA

– Total degrees of freedom: N – 1
• Subdivided into dfB = g – 1 and dfW = N - g

– This gives the test statistic F

1
*

−
−

=
g

gN
W
BF

Assumptions

Have random samples from each separate 
population

The variance is the same in each treatment 
group

The samples are sufficiently large that the 
CLT holds for each sample mean (or the 
individual population distributions are normal)
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What does it mean when we reject H?

The null hypothesis H is a joint one:  that all 
population means are equal

When we reject the null, that does NOT mean 
that the means are all different!

It means that at least one is different

To find out which is different, can do post hoc
testing (pairwise t-tests, for example)

Additional aspects
Why not start off doing separate (z or t) 
tests for each pair of samples? ...
Testing the assumptions

Which mean(s) is/are not equal

– can do post hoc testing (pairwise t-tests, 
for example)

Multiple comparisons (multiple testing)

‘Data snooping’
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Factorial crossing
Compare 2 (or more) sets of conditions in the 
same experiment
Designs with factorial treatment structure 
allow you to measure interaction between 
two (or more) sets of conditions that 
influence the response – you will look at this 
in more detail during the exercises today
Factorial designs may be either observational 
or experimental

3 types of 2-factor factorial designs 
2 experimental factors – you randomize 
treatments to each unit
2 observational factors – you cross-classify
your populations into groups and get a sample 
from each population
1 experimental and 1 observational factor – you 
get a sample of units from each population, 
then use randomization to assign levels of the 
experimental factor (treatments), separately 
within each sample
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Interaction
Interaction is very common (and very 
important) in science 
Interaction is a difference of differences
Interaction is present if the effect of one 
factor is different for different levels of the 
other factor
Main effects can be difficult to interpret in 
the presence of interaction, because the effect 
of one factor depends on the level of the other 
factor

Interaction plot
no interaction interaction



10

Two-Way ANOVA

Two-Way Fixed Effects ANOVA
More complicated setup; example:
– Expression levels of one gene in lung cancer 

patients
– a different risk classes

• E.g.: ultrahigh, very high, intermediate, low
– b different age groups
– n individuals for each risk/age combination

Two-Way ANOVA
Observations: Xijk
– i is the risk class (i = 1, 2, …, a)
– j indicates the age group
– k corresponds to the individual in each group 

(k = 1, …, n)
• Each group is a possible risk/age combination

– The number of individuals in each group is the 
same, n

– This is a “balanced” design (equal numbers in 
each group

– Theory for unbalanced designs is a little more 
complicated
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Two-Way ANOVA

The model for each Xijk is

– Eijk are N(0, σ2)
– The mean of Xijk is μ + αi + βi + δij
– αi additive for risk class i
– βi additive for age group i
– δij risk/age interaction parameter

• Should be added if a possible group/group 
interaction exists

ijkijjiijk EX ++++= δβαμ

ai ,,2,1 K= bj ,,2,1 K= nk ,,2,1 K=

Two-Way ANOVA
Constraints:
– Σiαi = Σiβi = 0
– Σiδij = 0 for all j
– Σjδij = 0 for all i

The total sum of squares is then subdivided 
into four groups:
– Risk class SS
– Age group SS
– Interaction SS
– Within cells (“residual” or “error”) SS
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Two-Way ANOVA
Associated with each sum of squares
– Corresponding degrees of freedom (df)
– Corresponding mean square (MS)

• Sum of squares divided by degrees of freedom
The mean squares are compared using F
ratios to test various effects
– First – test for a significant risk/age 

interaction
– If there is an interaction, it may not be 

reasonable to test for significant risk or 
age differences

Multi-Way ANOVA
One-way and two-way fixed effects ANOVA 
can be extended to multi-way ANOVA
Example: four-way ANOVA (saturated) model:

One observation per cell
In general, interested in unsaturated models
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Model formulas in R
A simple model formula in R looks something 
like: yvar ~ xvar1 + xvar2 + xvar3

We could write this model (algebraically) as
Y = a + b1*x1 + b2*x2 + b3*x3

By default, an intercept is included in the 
model - you don’t have to include a term in the 
model formula
If you want to leave the intercept out:
yvar ~ -1 + xvar1 + xvar2 + xvar3

More on model formulas
We can also include interaction terms in a 
model formula:

yvar ~ xvar1 + xvar2 + xvar3

Examples

– yvar ~ xvar1 + xvar2 + xvar3 + 
xvar1:xvar2 

– yvar ~ (xvar1 + xvar2 + xvar3)^2

– yvar ~ (xvar1 * xvar2 * xvar3)
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More on model formulas
The generic form is response ~ predictors
The predictors can be numeric or factor
Other symbols to create formulas with combinations of 
variables (e.g. interactions)

+ to add more variables
- to leave out variables
: to introduce interactions between two terms
* to include both interactions and the terms

(a*b is the same as a+b+a:b)
^n adds all terms including interactions up to order n
I() treats what’s in () as a mathematical expression

Interpreting R output

> chicks.aov <- aov(Weight ~ House + Protein*LP*LS)
> summary(chicks.aov)

Df  Sum Sq Mean Sq F value    Pr(>F)    
House          1  708297  708297 15.8153 0.0021705 ** 
Protein        1  373751  373751  8.3454 0.0147366 *  
LP             2  636283  318141  7.1037 0.0104535 *  
LS             1 1421553 1421553 31.7414 0.0001524 ***
Protein:LP     2  858158  429079  9.5808 0.0038964 ** 
Protein:LS     1    7176    7176  0.1602 0.6966078    
LP:LS          2  308888  154444  3.4485 0.0687641 .  
Protein:LP:LS  2   50128   25064  0.5596 0.5868633    
Residuals     11  492640   44785                      
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 
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Numerical and graphical analysis
Tables of group means:

Numerical and graphical analysis

Design plot
Boxplots of outcome for each factor
Interaction plots 
Write out model, assumptions, define all 
parameters
anova table
Plots for assumption checking/model 
assessment
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Model assessment: Normality

Boxplots of observations (or residuals) 
should be symmetric
Plot of sample means vs sample variances 
should not show a pattern
QQ normal plots of observations (or 
residuals) should be a straight line
Check for outliers

QQ-Plot
Quantile-quantile plot
Used to assess 

whether a sample 
follows a particular (e.g. 
normal) distribution (or 
to compare two samples)

A method for looking 
for outliers when data 
are mostly normal

S
am

pl
e

Theoretical

Sample 
quantile is 
0.125

Value from Normal distribution
which yields a quantile of 0.125 (= -1.15)
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Typical deviations from straight line 
patterns

Outliers

Curvature at both ends (long or short tails)

Convex/concave curvature (asymmetry)

Horizontal segments, plateaus, gaps

Outliers
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Long Tails

Short Tails
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Plateaus/Gaps

Model assessment: Variance 
homogeneity

Boxplots of observations should have similar 
spread
Spread of residuals should be similar when 
plotted against group means
There are also formal tests  (e.g., Bartlett, 
Levene) but these are not so useful for 
diagnosis
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Diagnostic plots

Model assessment: Independence

Plot residuals against group means, might 
indicate e.g. autocorrelation
Usually need to deal with the independence 
issue at the design stage, through 
randomization or other means
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chicks.dat Demo

…


